Основные структурные уровни организации химических веществ и концепции эволюционной химии.

Концепции современного естествознания

0


Подпишитесь на бесплатную рассылку видео-курсов:

Ответ студента (23.01.2013)

Концепции структурной химии основываются на концепции атомистики, возрожденной англичанином Дж. Дальтоном, на учении шведа Йенса Берцелиуса, позднее подробно разработанных и уточненных немецким химиком Ф. Кекуле и нашим выдающимся соотечественником А. М. Бутлеровым. Берцелиуса интересовал вопрос об упорядоченности или произволе в объединении атомов в молекулах, на путях решения которого он разработал новую теорию строения химического вещества, а также произвел такое точное измерение атомных весов элементов, что они практически совпадают с современными данными. Символика химических элементов, формулы соединений и химических уравнений также предложены Берцелиусом в 1814 г. В качестве символа элемента он предложил принимать первую букву его латинского или греческого названия. В тех случаях, когда элементы начинаются с одних и тех же букв, к ним добавляется вторая буква названия. Берцелиус предложил все вещества разделить на органические и неорганические. Но главное, что необходимо знать, так это то, что Берцелиус выдвинул гипотезу, согласно которой все атомы химических элементов обладают различной электра отрицательностью и, объединяясь между собой в молекулы, не компенсируют полностью свои заряды, оставаясь электра заряженными. Так были заложены основания понятия «структура» и «электрохимия». Дальнейшее развитие теория Берцелиуса получила в работах немецкого химика Ф. Кекуле. Он сформировал основные положения теории валентности, обосновал наличие для углерода четырех единиц сродства, а для азота, кислорода и водорода соответственно трех, двух и одной. Впоследствии, через несколько десятилетий, в квантовой механике все это получило объяснение. Число единиц сродства, присущее атому того или иного элемента, получило название «валентность». Объединение атомов в молекулу происходит в результате замыкания свободных единиц сродства (валентности). Так образуются простейшие молекулы вроде молекул водорода, воды, и так же образуются очень важные в органике углерод углеродные цепи. Комбинируя атомы разных элементов, можно создать структуры (структурные формулы) любого химического соединения. Но не каждая из формул, которая может быть записана, осуществляется в природе. Заслугой теории валентности Кекуле стало представление об атомной структуре сначала углеводородов, а затем и для других органических соединений. Несколько позднее, в 1874 г., датский химик Я. Г. Вант-Гофф выдвинул смелое предположение, согласно которому четыре связи атома углерода направлены к вершинам тетраэдра, в центре которого находится этот атом. Так в химии возникли и стали укрепляться пространственные модели молекул, после чего началось бурное развитие структурной химии. Русский химик А. М. Бутлеров показал, что необходимо учитывать, помимо методики составления формул по Кекуле, еще так называемую химическую активность реагентов. Идеи Бутлерова блестяще подтвердились квантовой механикой, так что, согласно современным воззрениям, структура молекул — это пространственная и энергетическая упорядоченность системы, состоящей из атомных ядер и электронов. Главное, чему способствовали учения Кекуле и Бутлерова, так это синтезу сначала простейших, а затем и более сложных углеводородов. Но, вместе с тем, структурная химия не смогла решить проблемы получения этилена, бензола, ацетилена, дефинила (необходимого при производстве каучука) и других углеводородов с цепочкой из четырех атомов углерода. Решение этой проблемы требовало нефтехимическое производство, и оно оказалось возможным в третьей из указанных нами концептуальных химических систем, посредством химической кинетики и термодинамики. Другими крупными недостатками органического синтеза являются низкие выходы продуктов, большие побочные отходы, но особенно использование дорогостоящего сырья сельскохозяйственного производства — зерна, жиров, молочных продуктов. Система и концепции эволюционной химии стали формироваться в 60-70-е годы XX века и в своей основе отвечают давней мечте химиков освоить и перенять опыт лаборатории живого организма, понять, как из неорганической (косной) материи возникает органическая, а затем и живое вещество — жизнь. Здесь опять можно упомянуть И. Берцелиуса, а дополнительно немца Ю. Либиха, француза М. Бертло. Наш выдающийся химико-физик, Нобелевский лауреат по химии Николай Николаевич Семенов представлял химические процессы в тканях растений и животных как химическое производство живой природы, как производство неких «молекулярных машин» совершенно исключительной точности, быстроты и необычайного совершенства. Это подтверждается открытым недавно синтезом больших белковых молекул со строгим чередованием аминокислот. Клетки имеют в своем составе субмикроскпические «сборные заводики» — рибосомы, содержащие рибонуклеиновые кислоты (РНК), как сборные «машины». Каждый вид коротких молекул транспортных РНК захватывает один определенный вид аминокислот, несет их в рибосому и ставит каждую аминокислоту на свое место согласно информации, содержащейся в молекулах РНК. Тут же к аминокислотам подходят катализаторы-ферменты и осуществляют «сшивку» аминокислот в одну молекулу белка со строгим чередованием. Это настоящий природный завод, строящий молекулу по плану, выработанному организмами в процессе эволюции. Вот эти планы живых организмов и предполагается использовать в новой эволюционной химии. А начиналось это направление в трудах великого французского биолога Луи Пастера при исследовании процесса брожения, осуществляемого деятельностью молочнокислых бактерий. Из своих наблюдений Пастер сделал вывод об особом уровне материальной организации ферментов, что в конечном итоге привело к созданию такой науки, как ферментология, к успехам эволюционного катализа и молекулярной биологии. Так было установлено, что состав и структура биополимеров имеют единый набор для всех живых организмов и что одни и те же физические и химические законы управляют как абиогенными процессами, так и процессами жизнедеятельности. Кроме того, была доказана уникальная специфичность живого, проявляющаяся не только на высших уровнях организации клетки, но и в поведении фрагментов живых организмов на молекулярном уровне, на котором также действуют закономерности других уровней. Специфика молекулярного уровня живых и неживых систем — в существенном различии принципов действия ферментов и катализаторов, в различии механизмов образования полимеров и биополимеров. Структура указанных полимеров определяется только генетическим кодом (сегодня точно известным науке), и, наконец, в таком поразительном факте, что многие химические реакции окислительно-восстановительного характера могут происходить в клетке без непосредственного контакта между реагирующими молекулами. Таким образом, в живых организмах могут происходить и происходят такие химические превращения, которые, казалось бы, невозможно было встретить в неживой природе. Но постепенно они стали доступны химикам, когда удалось освоить каталитический опыт природы, живой клетки. Факт того, что ферментный катализ играл решающую, фундаментальную роль в процессе перехода от химических систем к системам биологическим, т. е. на пред биологической стадии эволюции, в настоящее время подтверждается многими данными. Исключительно важную роль сыграла реакция по самоорганизации химических систем, проведенная выдающимся советским биохимиком Борисом Павловичем Белоусовым, затем тщательно изученная А. М. Жаботинским, вошедшая в арсенал современной эволюционной химии под названием реакции Белоусова -Жаботинского. Эта реакция сопровождается образованием специфических пространственных и временных структур (например, периодическое чередование цвета жидкости) за счет поступления новых и удаления использованных химических реагентов. Вот в этих реакциях самоорганизации как раз решающая роль принадлежит именно каталитическим процессам. Понятие «самоорганизации» (более подробно см. в гл. 12) означает упорядоченность существования материальных динамических, качественно изменяющихся систем. Роль каталитических процессов в них усиливается по мере усложнения состава и структуры химических систем. Отрадно, что определяющее значение в исследовании этого плана сыграли работы отечественных ученых И. В. Березина, А. А. Баландина и особенно А. П. Руденко, создавшего в 1964-1969 гг. единую теорию химической эволюции и биогенеза. Эта теория решает в комплексе вопросы о движущих силах и механизмах эволюционного процесса, т. е. о законах химической эволюции, отборе элементов и структур и их причинной обусловленности, уровне химической организации и иерархии химических систем как следствия эволюции. Сущность теории Руденко состоит в утверждении и обосновании принципа того, что химическая эволюция представляет собой саморазвитие открытых каталитических систем, и, следовательно, эволюционирующим веществом являются катализаторы. В ходе реакций происходит естественный отбор тех каталитических центров, которые обладают наибольшей активностью. Александр Прокопьевич Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью образуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности. Следует также отметить, что эволюционный процесс предполагает особый дифференцированный отбор лишь тех химических элементов и соединений, которые являются основным строительным материалом для образования биологических систем. В связи с этим достаточно упомянуть, что более чем из ста химических элементов лишь шесть — углерод, водород, кислород, азот, фосфор и сера — общая весовая доля которых в организмах составляет 97,4%, получивших название органо- или биогенов, служат основой для построения живых систем.


Ответ студента (05.09.2013)

Химия — наука о составе, внутреннем строении и превращении вещества, а также о механизмах этих превращений. Поскольку способы решения основной проблемы химии появлялись последовательно, то в истории химии можно выделить четыре последовательно сменявших друг друга этапа. В то же время с каждым из названных способов решения основной проблемы химии связана собственная концептуальная система знаний. Эти четыре концептуальных системы знания находятся в отношениях иерархии (субординации). В системе химии они являются подсистемами, так же как сама химия представляет собой подсистему естествознания в целом. Концептуальные системы химии можно представить наглядно в виде схемы. В развитии химии происходит не смена, а строго закономерное, последовательное появление концептуальных систем. При этом каждая вновь появляющаяся система не отрицает предыдущую, а, наоборот, опирается на нее и включает в себя в преобразованном виде. Таким образом, формируется система химии — единая целостность всех химических знаний, которые возникают и существуют не отдельно друг от друга, а в тесной взаимосвязи, дополняют друг друга и объединяются в концептуальные системы химических знаний, которые находятся между собой в отношениях иерархии. В химическом производстве стала преобладать переработка огромных масс вещества растительного и животного происхождения. Качественное разнообразие данных веществ потрясающе велико — сотни тысяч химических соединений, состав которых, тем не менее, крайне однообразен, так как они состоят из нескольких элементов-органогенов. Это — углерод, водород, кислород, сера, азот, фосфор. Объяснение необычайно широкому разнообразию органических соединений при столь бедном элементном составе было найдено в явлениях, получивших названия изомерии и полимерии. Так было положено начало второму уровню развития химических знаний, который получил название структурной химии. Структурная химия стала более высоким уровнем по отношению к учению о составе вещества. Основы структурной химии были заложены еще Дж. Дальтоном, который показал, что любое химическое вещество представляет собой совокупность молекул, состоящих из определенного количества атомов одного, двух или трех химических элементов. Поэтому важнейшим шагом в развитии структурной химии стало создание теории химического строения органических соединений русским химиком А.М. Бутлеровым. В XX в. структурная химия получила дальнейшее развитие. В частности, было уточнено понятие структуры, под которой стали понимать устойчивую упорядоченность качественно неизменной системы. Также было введено понятие атомной структуры — устойчивой совокупности ядра и окружающих его электронов, находящихся в электромагнитном взаимодействии друг с другом, и молекулярной структуры — сочетания ограниченного числа атомов, имеющих закономерное расположение в пространстве и связанных друг с другом химической связью с помощью валентных электронов. Современная структурная химия достигла больших результатов. Синтез новых органических веществ позволяет получить полезные и ценные материалы, отсутствующие в природе. Так, ежегодно в мире синтезируют тысячи килограммов аскорбиновой кислоты (витамина С), множество новых лекарств, среди которых — безвредные антибиотики, лекарства против гипертонии, язвенной болезни и др


Нужно высшее
образование?

Учись дистанционно!

Попробуй бесплатно уже сейчас!

Просто заполни форму и получи доступ к нашей платформе:




Получить доступ бесплатно

Ваши данные под надежной защитой и не передаются 3-м лицам


Другие ответы по предмету

Концепция человека как биосоциального существа.
Концепция человека как биосоциального существа.
Образование и эволюция Солнечной системы.
Образование и эволюция Солнечной системы.
Естествознание,   предмет,   задачи,   методологи...
Естествознание, предмет, задачи, методологи...
Принципы глобального (универсального) эволюциониз...
Принципы глобального (универсального) эволюциониз...
Земля в мире Космоса.  Космизм.
Земля в мире Космоса. Космизм.