Законы природы и их познание. Синергетика

Концепции современного естествознания

Контрольные вопросы по предмету

0


Подпишитесь на бесплатную рассылку видео-курсов:

Текст видеолекции

Современная естественнонаучная картина мира.

 

Появление синергетики в современном естествознании инициировано, скорее всего, подготовкой глобального эволюционного синтеза всех естественно-научных дисциплин. Эту тенденцию в немалой степени сдерживало такое обстоятельство, как разительная асимметрия процессов деградации и развития в живой и неживой природе. Дело в том, что в классической науке (XIX в.) господствовало убеждение, что материи изначально присуща тенденция к разрушению всякой упорядоченности, стремление к исходному равновесию, что в энергетическом смысле и означало неупорядоченность, т.е. хаос. Такой взгляд на вещи сформировался под воздействием образцовой физической дисциплины — равновесной термодинамики.

Эта наука занимается процессами взаимопревращения различных видов энергии. В термодинамике было введено новое понятие — энтропия. Под энтропией стали понимать меру беспорядка системы. Более точная формулировка второго начала термодинамики приняла такой вид: «При самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает».

Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно полному хаосу.

Общий итог: необратимая направленность процессов преобразования энергии в изолированных системах рано или поздно приведет к превращению всех видов энергии в тепловую, которая рассеется, т.е. в среднем равномерно распределится между всеми элементами системы, что и будет означать термодинамическое равновесие, или полный хаос. Если наша Вселенная замкнута, то ее ждет именно такая незавидная участь. Из хаоса, как утверждали древние греки, она родилась, в хаос же, как предполагает классическая термодинамика, и возвратится.

Для сохранения непротиворечивости общей картины мира необходимо постулировать наличие у материи в целом не только разрушительной, но и созидательной тенденции. Материя способна осуществлять работу и против термодинамического равновесия, самоорганизовываться и самоусложняться.

Постулат о способности материи к саморазвитию в философию был введен достаточно давно. А вот его необходимость в фундаментальных естественных науках (физике, химии) начинает осознаваться только сейчас. На волне этих проблем и возникла синергетикатеория самоорганизации. Ее разработка началась несколько десятилетий назад, и в настоящее время она развивается по нескольким направлениям: это синергетика (Г. Хакен), неравновесная термодинамика (И. Пригожин) и др. Не вдаваясь в детали и оттенки развития этих направлений, охарактеризуем общий смысл предлагаемого ими комплекса идей, называя их синергетическими (термин Г. Хакена).

Главный мировоззренческий сдвиг, произведенный синергетикой, можно выразить следующим образом:

- процессы разрушения и созидания, деградации и эволюции во Вселенной по меньшей мере равноправны;

- процессы созидания (нарастания сложности и упорядоченности) имеют единый алгоритм независимо от природы систем, в которых они осуществляются.

Таким образом, синергетика претендует на открытие некоего универсального механизма, с помощью которого осуществляется самоорганизация как в живой, так и неживой природе. Под самоорганизацией при этом понимается спонтанный переход открытой неравновесной системы от менее к более сложным и упорядоченным формам организации.

Отсюда следует, что объектом синергетики могут быть отнюдь не любые системы, а только те, которые удовлетворяют по меньшей мере двум условиям:

- они должны быть открытыми, т.е. обмениваться веществом или энергией с внешней средой;

- они должны также быть существенно неравновесными, т.е. находиться в состоянии, далеком от термодинамического равновесия.

Итак, синергетика утверждает, что развитие открытых и сильно неравновесных систем протекает путем нарастающей сложности и упорядоченности. В цикле развития такой системы наблюдаются две фазы:

Период плавного эволюционного развития с хорошо предсказуемыми линейными изменениями, подводящими в итоге систему к некоторому неустойчивому критическому состоянию.

 

 

Выход из критического состояния одномоментно, скачком и переход в новое устойчивое состояние с большей степенью сложности и упорядоченности.

Важная особенность: переход системы в новое устойчивое состояние неоднозначен. Достигшая критических параметров система из состояния сильной неустойчивости как бы «сваливается» в одно из многих возможных новых для нее устойчивых состояний. В этой точке (ее называют точкой бифуркации) эволюционный путь системы как бы разветвляется, и какая именно ветвь развития будет выбрана — решает случай! Но после того как «выбор сделан» и система перешла в качественно новое устойчивое состояние, назад возврата нет. Процесс этот необратим. А отсюда, следует, что развитие таких систем имеет принципиально непредсказуемый характер. Можно просчитать варианты ветвления путей эволюции системы, но какой именно из них будет выбран случаем, однозначно спрогнозировать нельзя.

Поиск аналогичных процессов самоорганизации в других классах открытых неравновесных систем вроде бы обещает быть успешным: механизм действия лазера, рост кристаллов, химические часы (реакция Белоусова — Жаботинского), формирование живого организма, динамика популяций, рыночная экономика, наконец, в которой хаотичные действия миллионов свободных индивидов приводят к образованию устойчивых и сложных макроструктур. Все это примеры самоорганизации систем самой различной природы.

Синергетическая интерпретация такого рода явлений открывает новые возможности и направления их изучения. В обобщенном виде новизну синергетического подхода можно выразить следующими позициями.

Хаос не только разрушителен, но и созидателен, конструктивен; развитие осуществляется через неустойчивость (хаотичность). Порядок и хаос не исключают, а дополняют друг друга: порядок возникает из хаоса.

Линейный характер эволюции сложных систем, к которому привыкла классическая наука, не правило, а скорее исключение; развитие большинства таких систем носит нелинейный характер. А это значит, что для сложных систем всегда существует несколько возможных путей эволюции. Развитие осуществляется через случайный выбор одной из нескольких разрешенных возможностей дальнейшей эволюции в точках бифуркации. Следовательно, случайность — не досадное недоразумение, она встроена в механизм эволюции. А еще это означает, что нынешний путь эволюции системы может быть и не лучше отвергнутых случайным выбором.

Синергетика родом из физических дисциплин — термодинамики, радиофизики, но ее идеи носят междисциплинарный характер. Они подводят базу под совершающийся в естествознании глобальный эволюционный синтез. Поэтому в синергетике видят одну из важнейших составляющих современной научной картины мира.

Впервые термин кибернетика встречается у древнегре­ческого философа Платона и означает искусство управлять кораблем (искусство кормчего), а в переносном смысле - искусство управления людьми. Долгое время этим терми­ном не пользовались. Только в 1948 г. этот термин был взят на вооружение известным американским математиком Норбертом Винером, который опубликовал книгу «Киберне­тика, или управление и связь в животном и в машине».