Концепции микромира. Эволюция представлений о строении микромира и его основные элементы.

Концепции современного естествознания

0


Подпишитесь на бесплатную рассылку видео-курсов:

Ответ студента (05.04.2013)

Вопрос №2. Концепции микромира. Эволюция представлений о строении микромира и его основные элементы. Весь наш мир мы условно делим на три уровня - мегамир, макромир и микромир. Мегамир - это космические системы и неограниченные масштабы. Макромир - это макроскопические тела размером от 10-6 до 107 см. Микромир сам делится на два подуровня: атомно-молекулярный (10-8-10-7 см) и квантовый (область, порядка 10-15 см). Это деление мира на уровни весьма условно, и все же процессы микромира нельзя рассматривать так же, как макропроцессы в неком уменьшенном масштабе, поскольку явления микромира подчиняются другим закономерностям и изменяются на основе иных принципов. Еще с древнейших времен человек пытался познать первооснову мира, то, из чего состоит все. Ранее такой основой считались атомы. Затем выяснилось, что атомы и даже атомные ядра делимы. Иногда странно осознавать, что окружающий нас мир, это только небольшая часть того, который может зреть и наблюдать человек, считать его реальным в своих ощущениях. Что большая часть мира не доступна реальному восприятию, но принадлежит лишь разуму, способному проникнуть в глубь его структуры. Умозрительность в восприятии того, что не видимо, не ощущаемо нами наталкивает на мысль, а не эфемерно ли то, что мы разумеем под понятием микромира? Не эфемерно! Напротив, удивляешься способности сознания понимать, как нечто эфемерное, невидимое, неощущаемое может творить изящество и красоту окружающей нас природы и быть не только инструментом её же познания разумом, но и служить практическим целям развития самого человека. Микромир – это та область, свойствами которого так неохотно делится Природа. Слишком велики энергии, которые необходимы для познания того элементарного, из которого состоит всё! Слишком на близких расстояниях минимальной размерности происходит взаимодействие в микромире. Сегодня каждому известна общность микро- и макромира. Эта общность базируется на квантовой теории. Бездна, когда-то разделявшая невидимый микромир и макромир, сегодня заполнена. Основу материи во вселенной составляет квант электромагнитного поля. Это та частица, которая способствовала возникновению элементарных частиц в Метагалактике в момент ее зарождения. Квант не имеет массы покоя. Ничтожный по массе фотон движется в физическом вакууме со средней скоростью около 299792458 м/сек, и представляет собой фундаментальную постоянную скорости света. Физики смоделировали процесс возникновения вещества на основе квантовой теории. Понятие о простом и сложном в организации Мира также относительны, так как простое (атом, клетка живого организма) оказывается таким же сложным, как и все остальное многообразие вещества и материи. И, тем не менее, развитие идёт от элементарного в направлении возрастания сложности: клетка – организм – популяция; квант – элементарная частица – ядро атома – атом – структура, состоящая из атомов и т.д. Так что микромир представляет собой мир элементарных частиц, атомов, молекул 1, мир бактерий и вирусов. Это вселенная невидимого невооруженным взглядом материального мира 2. Это мир чрезвычайно небольших расстояний между микрообъектами, очень малой размерности, которые по отношению к самим, еще меньшим объектам, представляются гигантскими. Например, размерность атомного ядра водорода лежит в пределах 10-13 см. Даже величина «ангстрем» 3, придуманная для описания межатомных расстояний, оказалась огромной для описания структуры атома. Но она удобна, например, для описания расстояний между атомами в кристаллах. Удивительно малые размерности в микромире еще контрастнее выступают при оценке масс элементарных частиц в сравнении с ядрами атомов, размерностью молекул и т.д. Почему Природа не наделила человеческий глаз способностью видеть микромир? Наверное, потому, чтобы он не сошёл с ума. Ибо весьма трудно представить, когда, обладая квантовым зрением, мы смогли бы что-нибудь увидеть конкретное, так привычное глазу. Поскольку все, представшее перед нами, выглядело бы размытой поверхностью непрерывно колеблющихся частиц, представляющих собой сгустки энергии, разделённые огромными расстояниями. Природа, лишив возможность человека восприятия глазом микромир, оставила ему шанс увидеть микромир разумом! И он заметил его существование, привлекая для этого огромные энергии, сталкивая и разрушая частицы на мощных ускорителях. Частицы микромира, которых не видел глазами, но понимал разумом их свойства. И однажды человек обнаружил великое единение мира, состоящего из мельчайших крупиц материи.


Ответ студента Наталья из группы Ю 56-10

В истории изучения природы можно выделить два этапа: донаучный и научный. Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествознания в XVI-XVII вв. В этот период учения о природе носили чисто натурфилософский характер: наблюдаемые природные явления объяснялись на основе умозрительных философских принципов. Наиболее значимой для последующего развития естественных наук была концепция дискретного строения материи - атомизм, согласно которому все тела состоят из атомов - мельчайших в мире частиц. Античный атомизм был первой теоретической программой объяснения целого как суммы отдельных составляющих его частей. Исходными началами в атомизме выступали атомы и пустота. Сущность протекания природных процессов объяснялась на основе механического взаимодействия атомов, их притяжения и отталкивания. Механистическая программа описания природы, впервые выдвинутая в античном атомизме, наиболее полно реализовалась в классической механике, со становления которой начинается научный этап изучения природы. Поскольку современные научные представления о структурных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начинать исследование нужно с концепций классической физики. Формирование научных взглядов на строение материи относится к XVI в., когда Г. Галилеем была заложена основа первой в истории науки физической картины мира - механистической. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методологию нового способа описания природы - научно-теоретического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, которые становились предметом научного исследования. Выделение отдельных характеристик объекта позволяло строить теоретические модели и проверять их в условиях научного эксперимента. Эта методологическая концепция, впервые сформулированная Галилеем в труде «Пробирные весы», оказала решающее влияние на становление классического естествознания. И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система. В рамках механистической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, не делимы, непроницаемы, характеризуются наличием массы и веса. Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсолютно постоянно и всегда пребывает в покое. Время представлялось как величина, не зависящая ни от пространства, ни от материи. Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. Считалось, что все физические процессы можно свести к перемещению материальных точек под действием силы тяготения, которая является дальнодействующей. Итогом ньютоновской картины мира явился образ Вселенной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий. Отсюда и вера в то, что теоретически можно точно реконструировать любую прошлую ситуацию во Вселенной или предсказать будущее с абсолютной определенностью. И.Р. Пригожин назвал эту веру в безграничную предсказуемость «основополагающим мифом классической науки». Механистический подход к описанию природы оказался необычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рамках механистической картины мира. Разрабатывая оптику, И. Ньютон, следуя логике своего учения, считал свет потоком материальных частиц - корпускул. В корпускулярной теории света И. Ньютона утверждалось, что светящиеся тела излучают мельчайшие частицы, которые движутся в согласии с законами механики и вызывают ощущение света, попадая в глаз. На базе этой теории И. Ньютон дал объяснение законам отражения и преломления света. Другой областью физики, где механические модели оказались неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира. Явление электромагнетизма открыл датский естествоиспытатель Х.К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток. Осмысливая свои эксперименты, он ввел понятие «силовые линии». М. Фарадей, обладавший талантом экспериментатора и богатым воображением, с классической ясностью представлял себе действие электрических сил от точки к точке в их «силовом поле». На основе своего представления о силовых линиях он предположил, что существует глубокое родство между электричеством и светом, и хотел построить и экспериментально обосновать новую оптику, в которой свет рассматривался бы как колебания силового поля. Эта мысль была необычайно смела для того времени, но достойна исследователя, который считал, что только тот находит великое, кто исследует маловероятное. М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его работы стали исходным пунктом для исследований Дж. К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Используя высокоразвитые математические методы, Максвелл «перевел» модель силовых линий Фарадея в математическую формулу. Обобщив установленные ранее экспериментальным путем законы электромагнитных явлений и открытое М. Фарадеем явление электромагнитной индукции, Максвелл чисто математическим путем вычислил систему дифференциальных уравнений, описывающих электромагнитное поле. Эта система уравнений дает в пределах своей применимости полное описание электромагнитных явлений и представляет собой столь же совершенную и логически стройную теорию, как и система ньютоновской механики. Итак, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля. Вещество и поле различаются как корпускулярные и волновые сущности: вещество дискретно и состоит из атомов, а поле непрерывно. Вещество и поле различаются по своим физическим характеристикам: частицы вещества обладают массой покоя, а поле - нет. Вещество и поле различаются по степени проницаемости: вещество малопроницаемо, а поле, наоборот, полностью проницаемо. Скорость распространения поля равна скорости света, а скорость движения частиц вещества меньше ее на много порядков. При переходе к исследованию микромира обнаружилось, что физическая реальность едина и нет пропасти между веществом и полем. Изучая микрочастицы, ученые столкнулись с парадоксальной с точки зрения классической науки ситуацией: одни и те же объекты обнаруживали как волновые, так и корпускулярные свойства. Первый шаг в этом направлении был сделан немецким физиком М. Планком. Как известно, в конце XIX в. в физике возникла трудность, которая получила название «ультрафиолетовой катастрофы». В соответствии с расчетами по формуле классической электродинамики интенсивность теплового излучения абсолютно черного тела должна была неограниченно возрастать, что явно противоречило опыту. В процессе работы по исследованию теплового излучения, которую М. Планк назвал самой тяжелой в своей жизни, он пришел к ошеломляющему выводу о том, что в процессах излучения энергия может быть отдана или поглощена не непрерывно и не в любых количествах, а лишь в известных неделимых порциях - квантах. Энергия квантов определяется через число колебаний соответствующего вида излучения и универсальную естественную константу. Первым физиком, который восторженно принял открытие элементарного кванта действия и творчески развил его, был А. Эйнштейн. В 1905 г. он перенес гениальную идею квантованного поглощения и отдачи энергии при тепловом излучении на излучение вообще и таким образом обосновал новое учение о свете. А. Эйнштейн предположил, что речь идет о естественной закономерности всеобщего характера. Не оглядываясь на господствующие в оптике взгляды, он применил гипотезу Планка к свету и пришел к выводу, что следует признать корпускулярную структуру света. Эйнштейновское представление о световых квантах помогло понять и наглядно представить явление фотоэлектрического эффекта, суть которого заключается в выбивании электронов из вещества под действием электромагнитных волн. Эксперименты показали, что наличие или отсутствие фотоэффекта определяется не интенсивностью падающей волны, а ее частотой. Если предположить, что каждый электрон вырывается одним фотоном, то становится ясно следующее: эффект возникает лишь в том случае, если энергия фотона, а следовательно, и его частота, достаточно велика для преодоления сил связи электрона с веществом. Открытое в 1923 г. американским физиком А.Х. Комптоном явление (эффект Комптона), которое отмечается при воздействии очень жесткими рентгеновскими лучами на атомы со свободными электронами, вновь и уже окончательно подтвердило квантовую теорию света. Эта теория относится к наиболее подтвержденным экспериментально физическим теориям. Развивая представления М. Планка и А. Эйнштейна, французский физик Луи де Бройль в 1924 г.выдвинул идею о волновых свойствах материи. В своей работе «Свет и материя» он писал о необходимости использовать волновые и корпускулярные представления не только в соответствии с учением А. Эйнштейна в теории света, но также и в теории материи. Форма частицы подразумевает сущность, заключенную в малом объеме или конечной области пространства, тогда как волна распространяется по его огромным областям. В квантовой физике эти два описания реальности являются взаимоисключающими, но равно необходимыми для того, чтобы полностью описать рассматриваемые явления. Открытия, сделанные в квантовой механике, оказали плодотворное воздействие не только на развитие физики, но и на другие области естествознания, прежде всего на биологию, в рамках которой была разработана концепция волновой, или квантовой, генетики. Когда в 1962 г. Дж. Уотсон, А. Уилсон и Ф. Крик получили Нобелевскую премию за открытие двойной спирали ДНК, несущей наследственную информацию, то генетикам показалось, что основные проблемы передачи генетической информации близки к разрешению. Вся информация записана в генах, совокупность которых в клеточных хромосомах определяет программу развития организма. Ставилась задача расшифровки генетического кода, под которым понималась вся последовательность нуклеотидов в ДНК. Однако действительность не оправдала ожиданий ученых. После открытия структуры ДНК и детального рассмотрения участия этой молекулы в генетических процессах основная проблема феномена жизни - механизмы ее воспроизведения - осталась, по сути, нераскрытой. Расшифровка генетического кода дала возможность объяснить синтез белков. Классические генетики исходили из того, что генетические молекулы, ДНК, имеют вещественную природу и работают как вещество, представляя собой вещественную матрицу, на которую записан вещественный генетический код. В соответствии с ним нарабатывается плотский, вещественный и материальный организм. Но вопрос о том, каким образом в хромосомах кодируется пространственно-временная структура организма, на основе знания последовательности нуклеотидов решить нельзя. Советскими учеными А.А. Любищевым и А.Г. Гурвичем еще в 20-30-е годы была высказана мысль о том, что рассмотрение генов как чисто вещественных структур явно недостаточно для теоретического описания феномена жизни. Идеи русских биологов А.А. Любищева и А.Г. Гурвича являются гигантским интеллектуальным достижением, опередившим свое время. Суть их мыслей заключена в триаде: - гены дуалистичны - они вещество и поле одновременно; - полевые элементы хромосом размечают пространство - время организма - и тем самым управляют развитием биосистем; - гены обладают эстетически-образной и речевой регуляторными функциями. Эти идеи оставались недооцененными вплоть до появления работ В.П. Казначеееа в 60-е годы XX в., в которых экспериментально были подтверждены предвидения ученых о наличии полевых форм передачи информации в живых организмах. Одновременно с экспериментами В.П. Казначеева китайский исследователь Цзян Каньчжен провел серию супергенетических экспериментов, которые перекликались с предвидением А.А. Любищева и А.Г. Гурвича. Отличие работ Цзян Каньчжена в том, что он проводил эксперименты не на клеточном уровне, а на уровне организма. Он исходил из того, что ДНК - генетический материал - существует в двух формах: пассивной (в виде ДНК) и активной (в виде электромагнитного поля). Первая форма сохраняет генетический код и обеспечивает стабильность организма, а вторая в состоянии его изменить путем воздействия на него биоэлектрическими сигналами. Китайский ученый сконструировал аппаратуру, которая была способна считывать, передавать на расстояние и вводить волновые супергенетические сигналы с биосистемы-донора в организм-акцептор. В результате он вывел немыслимые гибриды, «запрещенные» официальной генетикой, которая оперирует понятиями только вещественных генов. Так появились на свет животные и растительные химеры: куро-утки; кукуруза, из початков которой росли пшеничные колосья, и т.д. Живая материя состоит из неживых атомов и элементарных частиц, которые совмещают в себе фундаментальные свойства волны и частицы, но эти же свойства используются биосистемами в качестве основы для волнового энергоинформационного обмена. Иначе говоря, генетические молекулы излучают информационно-энергетическое поле, в котором закодирован весь организм, его физическое тело и душа. Гены - это не только то, что составляет так называемый генетический код, но и вся остальная, большая часть ДНК, которая раньше считалась бессмысленной. Собственной информации хромосом недостаточно для развития организма. Хромосомы по некоторому измерению обращены в физический вакуум, дающий главную часть информации для развития эмбриона. Генетический аппарат способен сам и с помощью вакуума генерировать командные волновые структуры типа голограмм, обеспечивающих развитие организма. Тексты ДНК и голограммы хромосомного континуума могут читаться в многомерном пространственно-временном и семантическом вариантах. Существуют волновые языки генома клеток, сходные с человеческими. Распознавание геномами растений человеческой речи (вне зависимости от языка) полностью соответствует положению лингвистической генетики о существовании праязыка генома биосистем на ранних этапах их эволюции, общего для всех организмов и сохранившегося в общей структуре генофонда Земли. Здесь видно соответствие идеям классика структурной лингвистики имеют глубинную врожденную универсальную грамматику, инвариантную для всех людей и, вероятно, для их собственных супергенетических структур. Атомистическая гипотеза строения материи, выдвинутая в античности Демокритом, была возрождена в XVIII в. химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в. Д.И. Менделеев построил систему химических элементов, основанную на их атомном весе. В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А.А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов. Изучение радиоактивности было продолжено французскими физиками супругами Пьером и Марией Кюри, открывшими новые радиоактивные элементы полоний и радий. Модель атома, предложенная Э. Резерфордом в 1911 г., напоминала Солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны. Ядро имеет положительный заряд, а электроны -- отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален. Дальнейшее развитие идей атомизма было связано с исследованием элементарных частиц. Частицы, входящие в состав прежде «неделимого» атома, называют элементарными. К ним относят и те частицы, которые получают в условиях эксперимента на мощных ускорителях. В настоящее время открыто более 350 микрочастиц. Термин «элементарная частица» первоначально означал простейшие, далее ни на что не разложимые частицы, лежащие в основе любых материальных образований. Позднее физики осознали всю условность термина «элементарный» применительно к микрообъектам. Вакуум в переводе с латинского (vacuum) означает пустоту. Еще в античности был поставлен вопрос о том, пусто мировое пространство или заполнено некой материальной средой, чем-то, отличающимся от пустоты. Согласно философской концепции великого древнегреческого философа Демокрита, все вещества состоят из частиц, между которыми находится пустота. Но согласно философской концепции другого не менее знаменитого древнегреческого философа Аристотеля, в мире нет ни малейшего места, где не было бы «ничего». Эта среда, пронизывающая все пространства Вселенной, была названа эфиром. В настоящее время концепция физического вакуума, наиболее полно разработанная в трудах академика РАЕН Г.И. Шипова


Ответ студента Валерия из группы Мб-43-15/3

Микромир – это мир на уровне элементарных частиц. Микромир состоит из: 1. Элементарные частицы (для описания поведения элементарных частиц используют наиболее сложные физические теории, представляющие синтез теории относительности и квантовой теории) 2. Атомные ядра — это связанные системы протонов и нейтронов. Массы ядер всегда несколько меньше суммы масс свободных протонов и нейтронов, составляющих ядро. 3. Атомы (состоят из плотного ядра и электронных орбит. Ядра имеют положительный электрический заряд и окружены роем отрицательно заряженных электронов. В целом атом электронейтрален. Атом есть наименьшая структурная единица химических элементов). 4. Молекулы (не всякие атомы способны соединяться друг с другом. Связь возможна в том случае, если совместная орбита целиком заполнена электронами. Такое образование называют молекулой. Молекула есть наименьшая структурная единица сложного химического соединения. Число возможных комбинаций атомов, определяющих число химических соединений, составляет миллионы) 5. Клетка (организованная часть живой материи: она усваивает пищу, способна существовать и расти, может разделиться на две, каждая из которых содержит генетический материал, идентичный исходной клетке. Клетки служат элементарными структурами на онтогенетическом уровне организации жизни. Клетка состоит из ядра и цитоплазмы). В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации.Так, элементарные частицы, различающиеся по своим свойствам и характеру взаимодействия, принято делить на две большие группы: 1. Фермионы - частицы с полуцелым спином (карки, электрон, протон, нейтрон, нейтрино); 2. Бозоны - частицы с целым спином (фотон, глюон, мезоны) (рис.1). Фермионы составляют вещество, бозоны переносят взаимодействие. Между частицами существует четыре типа взаимодействия, каждое из которых переносится своим типом бозонов. 1. Фотон, или квант света переносит электромагнитное взаимодействие. 2. Глюоны осуществляют перенос сильных ядерных взаимодействий, связывающих кварки. 3. Векторные бозоны переносят слабые взаимодействия, ответственные за некоторые распады частиц. По видам взаимодействий элементарные частицы делятся на: 1 Составные частицы: адроны -- частицы, участвующие во всех видах фундаментальных взаимодействий. Общее число около четырехсот. Они состоят из кварков и подразделяются, в свою очередь, на: мезоны - являются частицами с целочисленным спином (нулевым). Такие частицы называют бозонами; барионы - адроны с полуцелым спином (фермионы) и массами не меньше массы протона. За исключением протона все нестабильны. 2. Фундаментальные частицы -- бесструктурная элементарная частица, которую до настоящего времени не удалось описать как составную. В настоящее время термин применяется преимущественно для лептонов и кварков (по 6 частиц каждого рода, вместе с античастицами, составляют набор из 24 фундаментальных частиц) в совокупности с калибровочными бозонами (частицами-переносчиками фундаментальных взаимодействий): 3. Лептоны -- фермионы, которые имеют вид точечных частиц (т.е. не состоящих ни из чего) вплоть до масштабов порядка 10?18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов. 4. Кварки -- дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Микромир - это мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10~8 до 10~16 см, а время жизни - от бесконечности до 10~24 секунд.


Нужно высшее
образование?

Учись дистанционно!

Попробуй бесплатно уже сейчас!

Просто заполни форму и получи доступ к нашей платформе:




Получить доступ бесплатно

Ваши данные под надежной защитой и не передаются 3-м лицам


Другие ответы по предмету

Общая и специальная теории относительности и их м...
Общая и специальная теории относительности и их м...
Термодинамика в природных процессах (первый и вто...
Термодинамика в природных процессах (первый и вто...
Современные космологические модели Вселенной.
Современные космологические модели Вселенной.
Синергетика и неравновесная термодинамика:  черты...
Синергетика и неравновесная термодинамика: черты...
Научный метод и методология естественнонаучного п...
Научный метод и методология естественнонаучного п...