Общая и специальная теории относительности и их мировоззренческое значение.

Концепции современного естествознания

0


Подпишитесь на бесплатную рассылку видео-курсов:

Ответ студента (19.09.2012)

1.Специальная теория относительности 1.1 Роль и сущность специальной теории относительности Большинство парадоксальных и противоречащих интуитивным представлениям о мире эффектов, возникающих при движении со скоростью, близкой к скорости света, предсказывается именно специальной теорией относительности. Самый известный из них -- эффект замедления хода часов, или эффект замедления времени. Часы, движущиеся относительно наблюдателя, идут для него медленнее, чем точно такие же часы у него в руках. Время в системе координат, движущейся со скоростями, близкими к скорости света, относительно наблюдателя растягивается, а пространственная протяженность (длина) объектов вдоль оси направления движения -- напротив, сжимается. Этот эффект, известный как сокращение Лоренца--Фицджеральда, был описан в 1889 году ирландским физиком Джорджем Фицджеральдом (George Fitzgerald, 1851-1901) и дополнен в 1892 году нидерландцем Хендриком Лоренцем (Hendrick Lorentz, 1853-1928). Сокращение Лоренца--Фицджеральда объясняет, почему опыт Майкельсона--Морли по определению скорости движения Земли в космическом пространстве посредством замеров «эфирного ветра» дал отрицательный результат. Позже Эйнштейн включил эти уравнения в специальную теорию относительности и дополнил их аналогичной формулой преобразования для массы, согласно которой масса тела также увеличивается по мере приближения скорости тела к скорости света. Так, при скорости 260 000 км/с (87% от скорости света) масса объекта с точки зрения наблюдателя, находящегося в покоящейся системе отсчета, удвоится. Кунафин М. С. Концепции современного естествознания: Учебное пособие.- Уфа, 2009.-С.88 Со времени Эйнштейна все эти предсказания, сколь бы противоречащими здравому смыслу они ни казались, находят полное и прямое экспериментальное подтверждение. В одном из самых показательных опытов ученые Мичиганского университета поместили сверхточные атомные часы на борт авиалайнера, совершавшего регулярные трансатлантические рейсы, и после каждого его возвращения в аэропорт приписки сверяли их показания с контрольными часами. Выяснилось, что часы на самолете постепенно отставали от контрольных все больше и больше (если так можно выразиться, когда речь идет о долях секунды). Последние полвека ученые исследуют элементарные частицы на огромных аппаратных комплексах, которые называются ускорителями. В них пучки заряженных субатомных частиц (таких как протоны и электроны) разгоняются до скоростей, близких к скорости света, затем ими обстреливаются различные ядерные мишени. В таких опытах на ускорителях приходится учитывать увеличение массы разгоняемых частиц -- иначе результаты эксперимента попросту не будут поддаваться разумной интерпретации. И в этом смысле специальная теория относительности давно перешла из разряда гипотетических теорий в область инструментов прикладной инженерии, где используется наравне с законами механики Ньютона. Девис П. Суперсила. - М.,1989. 1.2 А. Эйнштейн. Единство пространства и времени. Связь массы и энергии Веками казалось очевидным, что существует трехмерное пространство, в котором царствуют законы геометрии, установленные еще древними греками. И это пространство, неизменно однородное, являясь вместилищем всего существующего само в себе, не содержит каких либо иных свойств. Пространство считалось бесконечным, и в силу его однородности был очевиден принцип относительности: относительными становились положения вещей в пространстве и, следовательно, - системы отсчета, понимаемые как определенные системы независимых координат, служащие для задания положения объектов относительно принятой точки отсчета. Демидов В.Е. Время, хранимое как драгоценность.-М.:Знание, 2007 Было время - один общий для всего и всех режиссер событий. Всякое движение происходит во времени. За многовековую историю человечество так привыкло к понятию времени, что на вопрос: что это такое? ответить оказалось весьма затруднительно. Обычно этим вопросом не задаются, а считают время фундаментальной категорией физического мира (независимой первопричиной). Время однородно. Оно течет одинаково во все времена, в любой точке пространства, независимо от системы отсчета, в которой эта точка определена. Считалось очевидным, что понятие одновременности процессов, протекающих в различных точках пространства, не нуждается в определении, так что интервал между двумя одинаковыми событиями неизменен, в каких бы областях пространства эти события не происходили. Время приобретало некое абсолютное значение, что хорошо соотносилось с религиозным мировоззрением людей. Понимая время как нечто невещественное, метафизическое, люди, тем не менее, установили определенные единицы его измерения, принимая в качестве таковых протяжение по длительности определенных циклических процессов, и тем самым, интуитивно выразили физическую сущность времени вообще. Наконец, масса - мера вещества, содержащегося в теле. Всякое вещество проявляет свои качества физическими свойствами, но и мера, количество вещества, также проявляется определенными свойствами - тяготением и инертностью, и только этими свойствами в физике и определяется, так что всякая дискуссия о равенстве или неравенстве массы, тяготеющей и инертной, казалась не более чем пустым наукословием. Изменить массу можно было только добавлением к ней или отнятием от нее какого-то количества вещества. Мир был логичен и линеен. Эту идиллическую картину природы было суждено разрушить Эйнштейну. В 1905 г. он опубликовал свою первую работу по теории относительности. Все странные факты, накопившиеся к тому времени в физике, от удивительного постоянства скорости света до не менее удивительного изменения массы электрона, получили простое и изящное объяснение. Прежде всего, скорость света объявлялась неизменной величиной, не зависящей от того, движется наблюдатель или находится в покое: в любом случае, даже если лаборатория в ракете будет лететь со скоростью света, прибор Майкельсона неизбежно покажет одну и ту же величину - около 300000 километров в секунду. «Догоняя свет со скоростью с (скорость света в вакууме), я должен был бы наблюдать этот луч как неподвижное электромагнитное поле, лишь колеблющееся в пространстве, - писал Эйнштейн. - Но, по-видимому, такой картины не бывает. Интуитивно мне с самого начала казалось ясным, что с точки зрения летящего наблюдателя все должно было бы происходить по тем же законам, что и для наблюдателя, покоящегося относительно Земли». Эйнтештейн А. О специальной и общей теории относительности.- Петроград, 1922 Из этого вытекало, что пространство и время (поэтому мы и говорим теперь о пространстве-времени), масса, энергия, движение взаимосвязаны. Понятия абсолютного пространства, времени и движения устранялись. Все движущиеся тела становились равноправными с точки зрения находящихся на них наблюдателей. Абсолютно никакими опытами, проведенными внутри равномерно и прямолинейно движущейся системы, нельзя определить, движется она или находится в покое. Любой экспериментатор может в этом случае считать себя покоящимся, а всех остальных - движущимися. Результаты решений уравнений, описывающих любые процессы, от этого не изменятся. Но как обстоит дело с практическим подтверждением следствий специальной теории относительности? Одной из практических реализаций положений этой теории являются колоссальные ускорители элементарных частиц: размеры и огромная мощность, которая нужна, чтобы привести их в действие, - вот следствия, прямо вытекающие из теории относительности. Чем быстрее летит частица, тем она становится массивнее, а чтобы изменить массу, приходится расходовать соответствующую энергию. Ну, а время? Формулы Эйнштейна говорят, что сторонний наблюдатель увидит, как время, в котором живет быстро движущаяся частица или экипаж ракетного корабля, протекает медленнее, чем в лаборатории, откуда ведется наблюдение. Этот вывод для многих кажется еще более фантастическим, нежели изменение массы. Но опыты упрямо говорят свое: да, время может изменяться. В верхних слоях атмосферы, на высоте 10...30 километров, космические лучи сталкиваются с атомами кислорода и азота. При этом образуются элементарные частицы пи-мезоны. Время их жизни в неподвижном относительно лаборатории состоянии - 2,6 10-8 секунды. После этого они распадаются. Это очень хорошо видно, когда искусственно полученный пи-мезон останавливают в поглотителе: от момента остановки до распада проходит именно столько времени. В силу этого родившийся в атмосфере пи-мезон может пролететь (даже со скоростью света!) не более 0,66 километра. Но вдруг эта элементарная частица становится долгожителем. Мы видим, как она пролетает целых 16 километров и живет соответственно в десятки раз дольше. Между тем, с точки зрения внутренних свойств пи-мезона, он существует по-прежнему 2,6 10-8 секунды. Аруцев А.А.Концепции современного естествознания.- СПб.:Питер, 2002.-С.90 1.3 Пространство и время в инерциальных системах Г.А. Лоренц показал, что хотя уравнения электродинамики не инвариантны относительно преобразования Галилея, они инвариантны относительно относительно некоторого другого линейного преобразования координат. Оно имело несколько более сложный вид, чем преобразование Галилея, и ныне носит название преобразований Лоренца. Вначале этот факт казался просто математическим курьезом, а преобразования Лоренца, казалось, не имели никакого физического смысла. Но Эйнштейн исходил из обратного. Он предположил, что преобразование Лоренца отражает действительную физическую реальность и связывает координаты, измеренные двумя наблюдателями, движущимися равномерно и прямолинейно друг относительно друга (если, конечно, оба они движутся прямолинейно и равномерно относительно системы координат, связанной с неподвижными звездами). И как раз не преобразование Галилея, а именно преобразование Лоренца имеет точный физический смысл. Тогда из инвариантности уравнений электродинамики относительно преобразования Лоренца следует, что они имеют одинаковый вид во всех системах координат, движущихся прямолинейно и равномерно относительно неподвижных звезд. А значит, все электромагнитные и оптические явления будут протекать совершенно одинаково, независимо от того, в какой системе координат они наблюдаются, и обнаружить по этим явлениям абсолютное движение по отношению к эфиру оказывается невозможно. Таким образом, отрицательный результат опыта Майкельсона и других опытов, поставленных с целью обнаружить движение Земли относительно эфира, становится совершенно естественным. Принятие относительности всех оптических и электромагнитных явлений (в том же смысле, в каком классическая механика понимает относительность всех механических явлений), с необходимостью будет означать, что не преобразование Галилея, а именно преобразование Лоренца выражает точную связь между двумя различными наблюдателями, движущимися прямолинейно и равномерно друг относительно друга. Важно было понять причины, по которым преобразования Галилея необходимо заменить преобразованиями Лоренца, и выяснить физические следствия этой замены. Это сделал Эйнштейн при помощи тонкой и глубокой критики понятий пространства и времени. Такая критика была совершенно необходима, поскольку преобразование Лоренца влекло за собой целый ряд следствий, казавшихся тогда совершенно парадоксальными. Действительно, из преобразования Лоренца следовало, что, с одной стороны, не существует абсолютного времени, то есть два наблюдателя, движущихся друг относительно друга, пользуются различным временем, а с другой стороны, что расстояние между двумя материальными точками также не имеет абсолютного характера и различно для различных наблюдателей. Из постулата об абсолютности времени и пространства следует преобразование Галилея. Если же принять преобразования Лоренца, то нужно отказаться от этих, казавшихся столь естественными постулатов. Чтобы прояснить этот трудный вопрос, Эйнштейн провел глубокий критический анализ экспериментальных методов измерения пространства и времени. При этом в качестве основного положения он принял постулат, согласно которому никакая энергия, никакой сигнал не может распространяться, со скоростью, превышающей скорость света в пустоте, а скорость распространения света в пустоте постоянна и не зависит от направления распространения. Существование этой верхней границы для скорости распространения сигналов позволило вывести формулы преобразования Лоренца и понять их физический смысл. В теории относительности понятие одновременности теряет свой абсолютный смысл: два события, происходящие в один и тот же момент времени в некоторой системе координат, будут не одновременными в другой системе координат, движущейся относительно первой. И этот, на первый взгляд столь парадоксальный вывод, как ясно показал Эйнштейн, является непосредственным следствием невозможности синхронизировать часы с помощью сигналов, распространяющихся со скоростью, превышающей скорость распространения света в пустоте. Рассуждения, при помощи которых Эйнштейн вводит свои новые представления, порою очень хитроумны и их сложно изложить корректно. Но они совершенно безупречны, и с логической точки зрения им не может быть предъявлено ни одно серьезное возражение. В частности, теория объясняет такой на первый взгляд парадоксальный факт, что сокращение масштабов и замедление хода часов имеют взаимный характер. Если каждый из двух наблюдателей, движущихся друг относительно друга прямолинейно и равномерно, обладает одинаковыми часами и линейками, то, произведя измерения, каждый из них обнаружит, что линейка другого короче его собственной, а часы другого отстают от его часов. Эта взаимность, которая на первый взгляд кажется такой удивительной, становится легко понятной при более внимательном изучении теории, чего мы здесь, конечно, не можем сделать. В теории же относительности, как это ясно уже из самого вида преобразования Лоренца, пространственные координаты и время (т.е. временная координата) больше не могут рассматриваться независимо. Для геометрического объяснения соотношений между пространственными координатами и временем различных наблюдателей нужно ввести некоторое абстрактное четырехмерное пространство, позволяющее очень изящно отразить внутреннюю связь между пространственными координатами и временем, которая содержится в преобразованиях Лоренца. Таким образом, мы видим, что теория относительности позволяет в каком-то смысле объединить временную координату и пространственные координаты в единое четырехмерное многообразие. Однако из этого, разумеется, вовсе не следует делать вывод, что в теории относительности полностью стирается физическое различие между временем и пространством и они становятся совершенно равноправными. Они целиком сохраняют там свой различный физический смысл. Более того, различие их находит свое отражение также в математической записи уравнения, в которое время входит иным образом, чем координаты. Так, если потребовать, чтобы указанное четырехмерное пространство было евклидовым (в геометрическом смысле), то в качестве четвертой координаты необходимо выбрать, не само время, а произведение его на мнимую единицу. В этом и проявляется существенное различие между временем и пространством. Одно из основных свойств времени - это его способность изменяться только в одном направлении. Отсюда вытекает своего рода неизотропность четырехмерного пространства: выделенный характер положительного направления вдоль оси времени. Каждому положению материальной точки в некоторый момент времени будет соответствовать точка в четырехмерном пространстве. Найдыш В.М.. Концепции современного естествознания.-М.:Дрофа,2008.-С.112 1.4 Неоднозначность геометрии физического пространства. Неевклидовы геометрии Одним из важных следствий специальной теории относительности является то, что пространство переплетено со временем, поэтому в действительности следует говорить не об одном только пространстве, а о пространстве-времени. В то же время пространство, доступное нашему непосредственному восприятию, с полной очевидностью и неизменностью остаётся трёхмерным. Если четвёртое измерение пространства существует, то где же оно? Наглядно представить мир, имеющий четыре измерения, можно попытаться, представив плоский мир с двумя измерениями. Будучи трёхмерными существами, мы видим, что этот плоский мир как бы вложен в третье измерение, но для двумерных существ представить это так же невозможно, как нам представить четвёртое. Развивая этот ход мысли дальше, можно предположить, что четыре измерения пространства-времени «вложены» во Вселенную, имеющую пять и более число измерений. Математики уже давно обобщили законы геометрии на случай пространства с произвольным числом измерений. Почему природа выбрала и, можно сказать, выделила именно число три? Оказывается, можно найти этому объяснение, но, разумеется, не следует забывать, что это объяснение принадлежит нам - трёхмерным существам. Математические решения показывают, что в пространстве с n измерениями мы приходим к универсальным законам обратной степени n-1. То есть в трёхмерном пространстве n-1=2 и справедлив закон «обратных квадратов». Если бы, например, гравитационное поле Солнца действовало на планеты по закону «обратных кубов», то планеты, двигаясь по спиральным траекториям, быстро упали бы на Солнце. В атомном мире у электронов не было бы устойчивых орбит, если бы пространство имело больше трёх измерений. Распространение волн также невозможно в пространстве с чётным числом измерений, например, двумерном. Сказанное не означает, что невозможно пространство с другим числом измерений, но физические законы в этих мирах принципиально отличались бы от законов нашего мира. В XIX веке Н. И. Лобачевский, изучая проблему пятого постулата в геометрии Евклида, пришел к выводу о том, что при определённых условиях прямые, которые кажутся нам параллельными, могут пересекаться. Цель его состояла в том, чтобы построить геометрию на основе новой системы аксиом и постулатов. Реализация этой программы привела Лобачевского к открытию неевклидовой геометрии. Лобачевский сделал величайшее открытие, но современники, даже крупные ученые, его не только не поняли, но заняли враждебную позицию. Позднее исследование Лобачевского явилось толчком к построению неевклидовых геометрий. Стало ясно, что геометрий как логических систем может быть построено много и только опыт способен решить, какая из них реализуется в окружающем нас мире. На современном математическом языке структура геометрии полностью задается выражением квадрата расстояния между соседними бесконечно близкими точками. В декартовых координатах евклидова пространства квадрат такого расстояния имеет вид: dl2 = dx2 + dy2 + dz2, где dx, dy, dz - дифференциалы координат. По сути дела, это не что иное, как теорема Пифагора для случая трехмерного пространства, если бы мы исходили из аксиом и постулатов Евклида. Это равенство можно положить в основу определения евклидовой геометрии. Евклидова геометрия обладает важнейшим свойством: в ней всегда можно ввести во всем пространстве глобальные декартовы координаты. Это означает, что евклидово пространство «плоское», или, иными словами, кривизна в каждой его точке равна нулю. Неевклидовы геометрии - это такие геометрии, в которых постулат о параллельных прямых заменён другим постулатом. При этом возможны два различных случая. В первом случае, называемом эллиптической геометрией, говорится, что на поверхности через данную точку, расположенную вне заданной линии, не может быть проведено ни одной параллельной ей линии. Поверхность сферы представляет собой грубую неточную модель неевклидовой поверхности такого типа. «Наиболее прямой» линией на сфере является круг с диаметром, равным диаметру сферы. Все большие круги пересекаются друг с другом, и поэтому невозможно, чтобы два больших круга были параллельны. Говорят, что неевклидовая поверхность этого типа имеет положительную кривизну. Такая кривизна приводит к тому, что поверхность замыкается сама на себя. Она имеет конечную, а не бесконечную площадь. Неевклидова геометрия, называемая гиперболической - это такая геометрия, в которой постулат о параллельных прямых заменён постулатом о бесконечном множестве параллельных, которые можно провести через точку на поверхности, расположенную вне данной линии. Грубой моделью поверхности такого типа является седловидная поверхность. Говорят, что такая поверхность имеет отрицательную кривизну. Она не замыкается сама на себя. Подобно евклидовой плоскости она тянется до бесконечности во всех направлениях. И эллиптическая и гиперболическая геометрии представляют собой геометрии поверхностей постоянной кривизны. Это означает, что кривизна везде одна и та же, объекты не претерпевают искажений при переходе из одной точки в другую. Существует неевклидова геометрия общего типа, обычно называемая римановой геометрией, это такая геометрия, в которой кривизна может меняться от точки к точке любым заданным способом. Гарднер М.Теория относительности для миллионов.- М.:Проспект, 2005.- С.96 Она была получена Б. Риманом, который, развивая идею Н. И. Лобачевского и К. Ф. Гаусса, ввёл особый класс геометрий, получивший название «римановых», которые только в бесконечно малой области совпадают с евклидовыми геометриями. Б. Риман обобщил также фундаментальное понятие кривизны пространства. В пространстве римановой геометрии не существует единых декартовых координат. Это означает, что кривизна в римановом пространстве всегда отлична от нуля, а её значение зависит от точки пространства. Изучение электромагнитных явлений, а также движения частиц со скоростями, близкими к скорости света, привело к удивительному открытию:пространство и время образуют единый континуум; роль расстояния между двумя близкими точками (событиями) играет величина, называемая интервалом. Квадрат интервала в декартовых координатах определяется равенством: ds2 = c2dT2 - dx2 - dy2 - dz2, где c - скорость света; T - время. Геометрия, определяемая таким интервалом, называется псевдоевклидовой, а четырехмерное пространство с такой геометрией - «пространством Минковского». Квадрат интервала ds2 может быть величиной положительной, отрицательной или равной нулю. Время и координаты входят в интервал почти равноправно (в квадрате) с той лишь принципиальной разницей, что у них разные знаки. В этом находит отражение глубокое различие таких физических понятий, как «длина» и «время». Величина интервала не зависит от системы отсчета, тогда как время и длина уже не являются абсолютными понятиями, они относительны и зависят от выбора системы отсчета. Интервал ds2 имеет одинаковый вид в бесконечном классе систем отсчета, движущихся одна относительно другой с постоянной скоростью, меньшей скорости света. Такие системы отсчета являются инерциальными, ибо в них выполняется закон инерции. Преобразования от одной инерциальной системы к другой, сохраняющие вид интервала, называются преобразованиями Лоренца. Теорию, сформулированную в классе инерциальных систем отсчета на основе интервала ds2, А. Эйнштейн назвал специальной теорией относительности. Джеймс Трефил «Природа науки. 200 законов мироздания». -М.:Библиотека Фонда Династия, 2007.-С.188 2. Общая теория относительности (ОТО) 2.1 Инерция и гравитация Весьма слабые гравитационные силы на современном этапе развития Вселенной играют определяющую роль в процессах космического масштаба, где электромагнитные взаимодействия оказываются в значительной степени скомпенсированными за счет существования равного количества разноименных зарядов, а коротко действующие ядерные силы проявляются только в областях сосредоточения плотного и горячего вещества. Современное понимание механизма возникновения гравитационных сил стало возможным лишь после создания теории относительности, то есть почти через три столетия после открытия Ньютоном закона Всемирного тяготения. Созданию современной теории гравитации предшествовало осознание глубокой связи, существующей между силами тяготения и «псевдосилами» инерции. Последние с классической точки зрения не являются мерой реального взаимодействия между телами, а вводятся в неинерциальных системах отсчета чисто формально для обеспечения возможности записи в них уравнений движения, совпадающих по форме со вторым законом Ньютона. Так все пассажиры внутри равноускоренно движущегося автобуса относительно связанной с ним неинерциальной системы отсчета «летят к стенке» с одинаковым ускорением (равным ускорению автобуса), оставаясь «на самом деле» неподвижными относительно «хорошей» инерциальной системы отсчета, связанной с Землей. Для объяснения этого явления с точки зрения находящегося в автобусе наблюдателя приходится предположить, что при ускорении на все объекты действуют силы инерции, пропорциональные их массе и приводящие к одинаковым ускорениям. При вращательном движении неинерциальных систем отсчета выражение для силы инерции приобретает более сложный вид, в частности, появляется слагаемое, зависящее от скорости движения тела - «Кориолисова сила». Обобщая описанный мысленный эксперимент, А. Эйнштейн вывел принцип эквивалентности: никаким опытом наблюдатель, помещенный в замкнутую систему отсчета, не может установить, движется ли эта система отсчета с ускорением в пустом пространстве или покоится во внешнем гравитационном поле. Кунафин М. С. Концепции современного естествознания: Учебное пособие.- Уфа, 2009.-С.110 Принцип эквивалентности в значительной степени устраняет «выделенность» инерциальных систем отсчета и позволяет исключить из теории само понятие гравитационных взаимодействий, факт наличия или отсутствия которых установить опытным путем, вообще говоря, оказывается невозможным. Наблюдаемые же на опыте отклонения траектории тел, перемещающихся вблизи массивных объектов, трактуются не как результат взаимодействия, а как следствие искривления пространства. Для непрямолинейного или ускоренного движения, вообще говоря, принцип относительности в его прежней формулировке оказывается уже несправедливым, поскольку в системе координат, движущейся ускоренно (например, вращающейся), механические, оптические или электромагнитные явления протекают иначе, чем в инерциальных системах отсчета. В частности, для правильного описания механических явлений, протекающих в ускоренной системе координат, необходимо вводить некие фиктивные дополнительные силы, называемые центробежными и силами Кориолиса. А необходимость введения этих сил дает наблюдателю возможность определить наличие ускорения системы координат, с которой он связан. Тем не менее, и в этом случае можно все же сохранить принцип относительности в его более общей форме, если допустить, что все законы природы выражаются в виде тензорных соотношений в четырехмерном пространстве и попытаться учесть влияние ускорения на физические явления введением ускоренно движущихся систем координат. Девис П. Суперсила. - М.,1989.-С.58 2.2 Теория гравитации В 1916 году развитие вышеуказанных идей А. Эйнштейном привело к представлению, что законы геометрии меняются около тяжелых тел и в этом состоит объяснение тяготения - объяснение движения планет и падения яблока на землю. Новая теория получила название релятивистской теории гравитации. Согласно этой теории, все тела движутся по инерции, но динамика их движения определяется кривизной пространства-времени в области движения. Взаимодействия сил заменяются геометрией пространства-времени, являющейся функцией гравитирующих масс. Течение времени в конкретной точке такой криволинейной Вселенной не зависит от системы отсчета, а абсолютно определяется гравитационным потенциалом в этой точке: чем больше его абсолютная величина, тем медленнее течет время. Если из двух одинаковых часов одни находились некоторое время в гравитационном поле, то после этого часы бывшие в поле, окажутся отставшими. Коренным образом меняется и само понятие системы отсчета. Если ранее под системой отсчета понимали совокупность покоящихся друг относительно друга, неизменным образом взаимно расположенных тел, то при наличии переменного гравитационного поля (а только такие поля и существуют во Вселенной) таких систем тел не существует и для точного определения положения тела в пространстве необходимо иметь совокупность бесконечного числа тел, заполняющее все пространство наподобие некоторой среды. Такая система тел вместе со связанными с каждым из них, произвольным образом идущими, часами и будет являться системой отсчета. Физически эти системы не эквивалентны, напротив, конкретный вид физических явлений, в том числе свойства движения тел, во всех системах отсчета становятся различными. Верно заметил в этой связи Ф. Кеффер: «мы потеряли систему отсчета, но приобрели универсальную символическую форму. Исчезли независимые фундаментальные категории физического мира: каждая зависит от совокупности других, и совокупность других зависит от каждой». Более подробный анализ показывает, что использование криволинейных координат в четырехмерном пространстве позволяет объяснить явления, наблюдаемые ускоренно движущимся наблюдателем, и, в частности, введение центробежных и других связанных с ними сил. Развивая эти идеи, Эйнштейн выдвинул чрезвычайно красивую гипотезу, на которой основана его известная теория гравитации. Силы тяготения, или гравитационные силы, играющие столь важную роль в астрономии, обладают одной особенностью, выделяющей их из всех известных нам в природе сил. А именно, как показали чрезвычайно точные эксперименты, проведенные Эйнштейном, эти силы всегда пропорциональны массе тела, на которое они действуют, и, следовательно, все тела независимо от величины их массы или заряда движутся в гравитационном поле совершенно одинаково (разумеется, при одних и тех же начальных условиях). Иначе говоря, их траектория определяется только свойствами гравитационного поля и не зависит от свойств движущегося тела. Это позволило Эйнштейну учесть влияние гравитационных полей, действующих в некоторой области пространства, введением локальной кривизны четырехмерного пространства. Используемый в специальной теории относительности четырехмерный континуум пространства-времени представляет собой евклидово или, как говорят, плоское пространство (в частном случае двух измерений примером евклидова пространства может служить обычная плоскость). Однако ничто не мешает предположить, что четырехмерное пространство может обладать переменной кривизной, то есть быть неэвклидовым. В этом случае уже нельзя ввести системы прямоугольных координат, и положение какой-либо точки в пространстве может быть определено лишь с помощью криволинейной системы координат, подобно тому, как это делается в геометрии при изучении искривленных поверхностей. Таким образом, наблюдатель, находящийся в неэвклидовом пространстве, должен для описания событий обязательно пользоваться криволинейной системой координат, что и приводит к появлению гравитационных сил. Центробежные силы, возникающие во вращающейся системе координат, связаны с тем, что наблюдатель, находящийся в этой системе, использует для описания явлений, происходящих в евклидовом четырехмерном пространстве, системы криволинейных координат. Подобно этому возникновение гравитационных сил вызвано тем, что в области действия гравитационных полей пространство оказывается неэвклидовым и наблюдатель вынужден пользоваться криволинейными координатами. Специальная теория относительности неоднократно подтверждена экспериментально. В частности, предсказываемое этой теорией заметное увеличение массы электронов при приближении их скорости к скорости света блестяще подтвердилось многими экспериментами, последние и наиболее точные из которых были проделаны Гюйе и Лаванши. Точно так же не вызывает сомнения принцип эквивалентности массы и энергии, неоспоримо доказанный экспериментами в ядерной физике. Но если специальная теория относительности достаточно проверена на опыте, то этого нельзя еще сказать об общей теории относительности. Действительно, новые эффекты, предсказываемые этой теорией, столь малы, что, обнаружив их, каждый раз приходится спрашивать себя, действительно ли это те самые эффекты, которые предсказывает общая теория относительности или же они вызваны другими неучтенными факторами. Пока не могут служить неопровержимыми доказательствами ни чрезвычайно малое вековое смещение перигелия Меркурия, ни очень слабое отклонение световых лучей, проходящих вблизи Солнца. Хотя эти эффекты и совпадают по порядку величины с предсказываемыми теорией Эйнштейна, толкование их все же не вполне однозначно. Более убедительными кажутся эксперименты по измерению красного смещения спектральных линий, излучаемых, например, спутником Сириуса. Однако этого единственного подтверждения еще недостаточно и одно оно, без сомнения, не может служить достоверным доказательством справедливости общей теории относительности. Но, несмотря на недостаточное экспериментальное подтверждение общей теории относительности, она - впечатляющее сооружение. Она принесла в физику множество новых и плодотворных идей, научила внимательно вникать в сущность основных теоретических положений и критически относиться к очевидным и само собой разумеющимся на первый взгляд утверждениям. Благодаря самой сложности, с одной стороны, и одновременно логической стройности ее, с другой, изучение этой теории чрезвычайно полезно для всех физиков-теоретиков. 2.3 Гравитационные массы и искривление пространства - времени Обобщением закона инерции Галилея на случай искривленных пространств является утверждение о том, что мировыми линиями свободных тел являются геодезические (кривые, соответствующие минимальному собственному времени движения между заданными двумя точками). Движение вдоль геодезической в искривленном пространстве с точки зрения трехмерного наблюдателя воспринимается как движение по трехмерной кривой с переменной скоростью, что в рамках классического подхода «объясняется» действием гравитационных сил. Применительно к линии на плоскости смысл понятия кривизны очевиден. Так, прямая линия не имеет кривизны, в то время как кривизна окружности постоянна. В общем случае кривизна линии меняется от точки к точке. Физиков, однако, интересуют не только простые геометрические фигуры. Так, больший интерес вызывает рассмотренный Гауссом случай поверхности в трехмерном пространстве. Почему? Как известно, кривую линию на плоскости всегда можно выпрямить, не растягивая и не укорачивая ее. Если же взять сферическую поверхность, то какой бы маленький кусок ее мы ни пытались уложить на плоскость, нам все равно пришлось бы его вытянуть, сломать или еще как-то деформировать. Таким образом, сфере присуще особое внутреннее свойство, отличающее сферу от плоскости, а именно кривизна, выражающая само геометрическое существо и не зависящая от способа построения сферы в трехмерном пространстве. Нарисовав треугольник на поверхности Земли, мы обнаружим заметное отличие его свойств от свойств треугольника на плоскости: сумма углов последнего в точности равна 180°. Если же начертить треугольник с вершинами на Северном полюсе, в городах Кито (Эквадор) и Либревиль (Габон), (оба города находятся на экваторе), то получится треугольник с тремя прямыми углами, сумма которых будет равна 270°. Итальянскому математику Леви-Чивита пришла в голову гениальная идея, как объяснить и описать кривизну. Эта идея оказалась источником разнообразных обобщений и была использована выдающимся французским математиком Картаном. Проделаем мысленный эксперимент: поместим пушку на Северный полюс и направим её ствол в сторону г. Кито (Эквадор перевезем пушку по поверхности Земли в Кито, а из Кито в Либревиль (Габон), сохраняя во время путешествия ствол пушки параллельным его первоначальному направлению. По прибытии в Либревиль ствол пушки будет направлен вдоль меридиана, то есть на Юг. Если же мы сразу перевезли бы пушку в Либревиль, то он по прибытии был бы направлен вдоль экватора (в сторону Кито). Итак, результат зависит от конкретного пути, и в нашем случае (речь идет о результате точном и общем) угол между двумя этими направлениями и равен тем 90°, которые добавились к сумме внутренних углов треугольника. Все это означает, что если пространство обладает кривизной, то вообще нельзя говорить о параллельности двух направлений, не исходящих из одной точки. В нашем пространстве этот эффект настолько мал, что заметить его в эксперименте типа эксперимента Леви-Чивита практически невозможно; тем не менее эффект существует и имеет большое философское значение. Нельзя в принципе делать какие-либо утверждения относительно взаимной ориентации двух удаленных друг от друга объектов; кривизна пространства вносит свои коррективы. Найдыш В.М.. Концепции современного естествознания.-М.:Дрофа,2008. - С. 89 Выдающаяся идея Эйнштейна состояла в том, чтобы связать эту кривизну с распределением вещества в пространстве. Согласно Эйнштейну, пространство обладает кривизной, а мы до сих пор ее не замечали, потому что она мала и проявляется только через гравитационные эффекты. Особенно наглядной является картина пространства, предложенная Эддингтоном. Он сравнивал пространство с хорошо натянутым эластичным полотнищем, которое в нормальном состоянии лежит целиком в плоскости. Если положить на полотнище тяжелые шары (символизирующие небесные тела), то оно искривится, изменив при этом свою геометрию. Каждый из двух находящихся рядом шаров стремится скатиться в яму, образованную соседом. Так, через посредство полотнища между шарами появляется сила взаимодействия, аналогичная силе тяготения. Действительно, в общей теории относительности силы тяготения возникают за счет искривления окружающего пространства. На сегодняшний день существуют некоторые экспериментальные подтверждения ОТО. В то же время уравнения гравитации предсказывают ряд наблюдаемых эффектов, необъяснимых с позиций классической физики: Прецессия эллиптических орбит планет, движущихся в поле сферических тел (зарегистрирована у ближайшей к Солнцу планеты - Меркурия). Эффект «абсолютного» замедления времени в гравитационном поле или при ускоренном движении (зарегистрирован по измерению времени распада нестабильных ядер и «красному смещению» световых волн в гравитационном поле). Искривление лучей света вблизи массивных тел, отличное по величине от эффекта, предсказываемого классической теории (наблюдается по изменению видимого положения звезд вблизи края Солнца). В пользу правильности ОТО говорят ее внутренняя логичность, красота и элегантность, хотя решающий аргумент остаётся за экспериментом. Кунафин М. С. Концепции современного естествознания: Учебное пособие.- Уфа, 2009. - С.119 вывод. Под теорией относительности понимают обычно совокупность наиболее существенных результатов, относящихся к инерциальным системам координат. Чтобы подчеркнуть это, её иногда называют частной или специальной теорией относительности. Но А. Эйнштейн полагал, что необходимо попытаться обобщить эти результаты на случай ускоренного движения и в результате построил теорию, справедливую для предельно общего случая. относительность эйнштейн механика ньютон Возвращаясь к законам Ньютона, я хотел бы особо отметить, что специальная теория относительности, хотя она внешне и противоречит законам классической ньютоновской механики, на самом деле практически в точности воспроизводит все обычные уравнения законов Ньютона, если ее применить для описания тел, движущихся со скоростью значительно меньше, чем скорость света. То есть, специальная теория относительности не отменяет ньютоновской физики, а расширяет и дополняет ее. Принцип относительности помогает также понять, почему именно скорость света, а не какая-нибудь другая, играет столь важную роль в этой модели строения мира -- этот вопрос задают многие из тех, кто впервые столкнулся с теорией относительности. Скорость света выделяется и играет особую роль универсальной константы, потому что она определена естественнонаучным законом. В силу принципа относительности скорость света в вакууме одинакова в любой системе отсчета. Это, казалось бы, противоречит здравому смыслу, поскольку получается, что свет от движущегося источника (с какой бы скоростью он ни двигался) и от неподвижного доходит до наблюдателя одновременно. Однако это так. Благодаря своей особой роли в законах природы скорость света занимает центральное место и в общей теории относительности. В начале 20 века Эйнштейн начал разрабатывать очень сложную физическую теорию, которая получила название общей теории относительности. Общая теория относительности применяется уже ко всем системам отсчета (а не только к движущимися с постоянной скоростью друг относительно друга) и выглядит математически гораздо сложнее, чем специальная (чем и объясняется разрыв в одиннадцать лет между их публикацией). Она включает в себя как частный случай специальную теорию относительности (и, следовательно, законы Ньютона). При этом общая теория относительности идёт значительно дальше всех своих предшественниц. В частности, она дает новую интерпретацию гравитации. Общая теория относительности делает мир четырехмерным: к трем пространственным измерениям добавляется время. Все четыре измерения неразрывны, поэтому речь идет уже не о пространственном расстоянии между двумя объектами, как это имеет место в трехмерном мире, а о пространственно-временных интервалах между событиями, которые объединяют их удаленность друг от друга -- как по времени, так и в пространстве. То есть пространство и время рассматриваются как четырехмерный пространственно-временной континуум или, попросту, пространство-время. В этом континууме наблюдатели, движущиеся друг относительно друга, могут расходиться даже во мнении о том, произошли ли два события одновременно -- или одно предшествовало другому. К счастью для нашего бедного разума, до нарушения причинно-следственных связей дело не доходит -- то есть существования систем координат, в которых два события происходят не одновременно и в разной последовательности, даже общая теория относительности не допускает.


Ответ студента (07.12.2012)

Общая и специальная теории относительности и их мировоззренческое значение. Введение В этом году отмечается 130 лет со дня рождения величайшего ученого XX столетия А. Эйнштейна. Его имя неразрывно связано с великой революцией в физике, свершившейся в начале века, - с созданием квантовой теории и теории относительности, причем вклад Эйнштейна в становление современной физической картины мира оказался определяющим. Он стоял у колыбели квантовой механики. Ему принадлежат первоклассные работы по статистике. Именно за работы в этих областях в 1921 г. ему была присуждена Нобелевская премия. Эйнштейну мы воздаем славу как человеку, сказавшему решительное слово в формировании специальной теории относительности, взявшему ответственность за ее физическое содержание и последовательно отстаивавшему созданную теорию, а также как создателю общей теории относительности. Теория относительности Эйнштейна перестала быть академическим учением - сейчас ею интересуются очень широкие круги. Ведь без эйнштейновской формулы о взаимосвязи энергии и массы нельзя понять ядерные процессы, а замедленное старение организмов в условиях быстрого движения волнует умы многих в связи с проблемами полета к далеким звездам. Велико и мировоззренческое значение теории относительности, так как она затрагивает коренные свойства времени и пространства. Прежде всего, что такое теория относительности? Она подразделяется на две части, наиболее важная из которых - специальная теория относительности. Это, в общих чертах, теория, из которой можно узнать, как выглядит мир для людей, мчащихся по свету с чрезвычайно высокой скоростью. Причем его движение должно быть равномерным и прямолинейным - не допускается никакого увеличения или уменьшения скорости и никакого отклонения от прямолинейного пути. В основе специальной теории относительности лежит очень простая идея: никаким способом невозможно узнать, действительно ли вы движетесь или нет. «И это все?» - подумали вы. Но если развить эту идею, то выяснится, что следствия такого, казалось бы, безобидного начала ошеломляющи. Оказывается, мир коренным образом отличается от того, каким вы его до сих пор себе. представляли. Рассмотрим одно из самых поразительных утверждений. Предположим, что расстались два брата-близнеца: один остался на Земле, а другой отправился на субсветовом космическом корабле в длительное межзвездное путешествие и затем вернулся обратно. Так вот, теория относительности утверждает, что при встрече астронавт окажется моложе своего брата, оставшегося на Земле. Но даже в тех случаях, когда специальная теория относительности не поражает наше воображение, она всегда модифицирует, а иногда производит коренной переворот старых теорий. Некоторые ее следствия имеют большое практическое значение для электроники, для ядерной энергетики. В целом она необходима для реального понимания пространства и времени, в которых мы живем. Другая часть - общая теория относительности - начинается с того, что в ней отбрасываются ограничения, связанные с равномерным и прямолинейным движением, и изучается опыт наблюдателей, движущихся в некотором смысле произвольно. Из этих обсуждений в конце концов возникает новая теория тяготения, которая несколько точнее ньютоновской в обычных условиях и, вероятно, значительно превосходит ее в экстремальных условиях. Она пока еще не имеет большого практического применения и, может статься, никогда не будет его иметь. Тем не менее, изучение общей теории относительности - это одно из самых увлекательных занятий, выпадающих на долю любознательного человека. Она дает нам ощущение истинного понимания свойств пространства и времени, в которых мы живем. Обе теории сосредотачиваются на новых подходах к пространству и времени, подходах, которые отличаются глубоко от тех, которые используются в каждодневной жизни; но релятивистские понятия пространства и времени неразрывно вплетаются в любую современную интерпретацию физических явлений в пределах от атома до вселенной в целом. 1. Истоки теории относительности. Принцип относительности Галилея Рассмотрим две космические ракеты. Относительно главной системы отсчета одна из них - назовем ее «Альфа» - покоится, другая же - «Бета» - движется со скоростью V равномерно и прямолинейно. Для краткости условимся называть физика, который ведет наблюдения и рассуждения в системе «Альфа», альфацентристом, а пользующегося системой «Бета» - бетацентристом (удобнее всего вообразить, что каждый из них находится в соответствующей ракете; однако это совсем не обязательно: пассажир ракеты «Альфа» иногда может почему-либо предпочесть относить все движения к ракете «Бета»). По отношению к системе «Бета» шар В покоится, а по отношению к системе «Альфа» - движется прямолинейно с постоянной скоростью V. Какое же из этих двух утверждений - покоится или движется - находится в лучшем согласии с законами Ньютона? Первый закон Ньютона в одинаковой мере предусматривает как сохранение покоя, так и сохранение равномерно-прямолинейного движения; следовательно, он одинаково хорошо выполняется в обеих системах. Второй закон Ньютона выражается формулой где F - сила, а - ускорение, m - масса. Например, если подействовать на шар В силой, направленной влево, он приобретет ускорение направленное в ту же сторону. Наблюдателю в ракете «Альфа» покажется, что шар постепенно замедляет свое движение, а наблюдателю в ракете «Бета» - что неподвижный вначале шар начинает двигаться влево. Однако оба они найдут, что это происходит в полном согласии с формулой второго закона Ньютона. Ведь их мнения расходятся только в отношении скоростей, а не ускорений шара: скажем, если альфацентрист найдет, что скорость шара изменилась от V до нуля, то бетацентрист - что от нуля до - V, т.е. на ту же самую величину - V. А одинаковое изменение скорости за единицу времени означает одинаковое ускорение. Что же касается силы F, то, смотря по ее природе, она может зависеть от самых разнообразных факторов. Например, сила растянутой пружины определяется ее материалом, геометрическими размерами и относительным удлинением; давление сжатого газа - его молекулярным объемом и температурой; сопротивление движению в данной среде - формой и геометрическими размерами движущегося тела, а также его относительной скоростью по отношению к жидкости или газу. Общим для всех этих факторов является полная независимость их от выбора системы отсчета. В классической механике не приходилось иметь дело с силами, величина или направление которых зависели бы от скорости по отношению к системе отсчета (единственное исключение - магнитное взаимодействие движущихся электрических зарядов; но эти силы относятся уже к области электродинамики, так что мы будем еще иметь случай говорить о них более подробно). Измерение силы динамометром также дает в системах «Альфа» и «Бета» совершенно одинаковые результаты (ведь равновесие сил может быть с равным основанием констатировано как в состоянии покоя, так и в состоянии равномерно-прямолинейного движения). Как видим, благодаря одинаковости (или, как говорят физики, инвариантности) ускорений и сил в обеих рассматриваемых системах отсчета в них одинаково хорошо выполняется второй закон Ньютона, т.е. имеет место прямая пропорциональность между действующей силой F и вызываемым ею ускорением а. Коэффициент пропорциональности m, т.е. масса тела, являющаяся мерой его инерционности, также оказывается в обоих случаях одним и тем же. Еще проще понять, что и третий закон Ньютона («Если тело А действует на тело В с силой F, то и тело В действует на тело А с такой же по величине и противоположной по направлению силой - F») выполняется не только в системе «Альфа», но и в системе «Бета». Как видим, все три закона Ньютона - а значит и вся классическая механика вообще - верны не только в главной системе отсчета (для которой они были первоначально установлены), но также и во всех тех системах, которые движутся относительно главной равномерно и прямолинейно. Такие системы отсчета мы будем называть инерциальными (во-первых, потому, что каждая из них связана с каким-нибудь телом, движущимся по инерции, а во-вторых, потому, что именно в таких системах неукоснительно выполняется закон инерции). Как мы уже убедились на ранее приведенных примерах, во всех других системах отсчета, которые не могут быть отнесены к категории инерциальных, законы Ньютона в той форме, в которой они были сформулированы, уже неприменимы. Там действуют другие, гораздо более запутанные и причудливые механические законы. Основной вывод из всего сказанного лучше всего может быть выражен в виде так называемого принципа относительности Галилея (Галилей был гениальным предшественником Ньютона; многие принципиально важные положения механики содержались уже в его исследованиях). Принцип относительности Галилея гласит: во всех инерциальных системах отсчета законы механики формулируются совершенно одинаково. Это значит, что никакими механическими опытами внутри лаборатории нельзя установить, покоится ли она относительно главной системы или же движется относительно нее равномерно-прямолинейно. Известно, например, что равномерное (без всяких толчков и качки) движение корабля не может никак повлиять на ведущуюся в его каютах игру в миллиард или настольный теннис. Сам Галилей, выступая в защиту учения Коперника против религиозного геоцентрического мировоззрения, часто ссылался на воображаемые опыты и наблюдения в такой «плавучей лаборатории». Формулируя принцип относительности Галилея, физики часто говорят, что законы механики инвариантны (т.е. неизменны) при переходе от одной инерциальной системы отсчета к другой инерциальной же системе. Это значит, что при изучении общих законов механического движения все инерциальные системы отсчета равноправны: ни одна из них не имеет никакого преимущества перед другими. Зато налицо существенное преимущество любой из равноправных между собой инерциальных систем по сравнению с неинерциальными: ведь законы механики в инерциальных системах формулируются гораздо проще, пространству и времени не приходится приписывать физически необоснованной неоднородности и асимметрии, и т.д. Словом, каждая инерциальная система обладает всеми теми преимуществами, которые были найдены у главной системы отсчета механики Ньютона. Поэтому нет никаких оснований признавать какую-то одну из таких систем «абсолютно покоящейся в пространстве». Название «принцип относительности» основано именно на этом. Ведь если бы физическим смыслом обладало не только относительное движение, но также и «движение вообще», «движение относительно пространства», различные инерциальные системы хоть чем-нибудь да различались бы между собой. Признав, что все инерциальные системы действительно равноправны, нельзя уже говорить о движении и покое иначе, как относительно какой-нибудь инерциальной системы, которая всякий раз может быть выбрана по произволу. Установленный Галилеем принцип относительности касался только механики - единственного раздела физики, достигшего к тому времени достаточного развития. Но сохраняет ли он силу также и для других физических явлений? И если нельзя выделить «абсолютно покоящуюся» систему посредством механических экспериментов, то не помогут ли в этом явления оптические, электрические или какие-нибудь еще? Ответ на этот вопрос должно было дать дальнейшее развитие науки. 2. Преобразование Галилея Пусть одно и то же явление описывается в двух инерциальных системах отсчета. Возникает вопрос о пересчете от описания явления в одной системе отсчета к описанию того же явления в другой системе. В качестве грубой иллюстрации можно представить себе две радиолокационные установки: одну - расположенную на земле, а другую - на самолете; вопрос состоит тогда в пересчете от показаний одной установки к показаниям другой. Для такого пересчета нужно, прежде всего, знать связь между координатами и временем х, у, z, t в одной системе отсчета и координатами и временем х', у', z', t' в другой системе. Старая физика принимала как нечто самоочевидное существование единого мирового времени t, одинакового во всех системах отсчета. Поэтому с точки зрения старой физики необходимо было положить t' = t или, самое большее, допустить изменение начала отсчета времени. Если рассматривать два события, происшедших в моменты времени t и ?, то промежуток времени между ними должен был (с точки зрения старой физики) получиться одинаковым во всех системах отсчета. Отсюда, t - ?= t'-?' (1.01) Далее, старая физика считала очевидным, что длина твердого стержня, измеряемая в двух системах отсчета, должна получаться одинаковой. (Вместо длины твердого стержня можно рассматривать расстояние между «одновременными» положениями двух точек, которые необязательно связаны жесткой связью.) Если обозначить координаты начала и конца стержня (или данных двух точек) в одной системе отсчета через (x, у, z) и (?, ?, ?) и в другой системе через (x', у', z') и (?', ?', ? '). то. согласно старой физике, должно быть (x - ?)2 + (y - ?) 2 + (z - ?) 2 = (x' - ?')2 + (у' - ?') 2 + (z' - ? ')2 (1.02) Из (1.01) и (1.02) однозначно вытекает общий вид преобразования, связывающего координаты и время х, у, z, t с координатами и временем х', у', z'. Это преобразование состоит из переноса начала отсчета координат и времени, из поворота пространственных координатных осей и из преобразования вида x' = x - Vxt y'=y-Vyt, z' =z - Vzt, t' = t, (1.03) где Vxt, Vyt, Vzt - постоянные, физический смысл которых легко найти: это есть скорость движения штрихованной координатной системы относительно нештрихованной (точнее - составляющие этой скорости в нештрихованной системе). Преобразование (1.03) носит название преобразования Галилея. Таким образом, старая физика утверждала, что если дана инерциальная система отсчета, то координаты и время во всякой другой системе отсчета движущейся относительно нее прямолинейно и равномерно, связаны с (х, у, z, t) преобразованиями Галилея (с точностью до переноса начала и поворота осей). Преобразование Галилея удовлетворяет принципу относительности в отношении законов механики, но не удовлетворяет ему в отношении законов распространения света. Действительно, уравнение распространения фронта световой волны меняет в результате преобразования Галилея свой вид. Если бы преобразование Галилея было правильным (а принцип относительности в общей форме - неправильным), то существовала бы только одна инерциальная система в смысле нашего определения, и по измененному виду уравнения распространения фронта волны было бы возможно определить скорость движения (даже равномерного и прямолинейного) всякой другой системы отсчета относительно этой единственной инерциальной системы («неподвижного эфира»). Отрицательный результат многочисленных точнейших опытов, поставленных с целью обнаружения такого относительного движения, не оставляет сомнений в том, что форма закона распространения фронта волны одна и та же во всех неускоренных системах отсчета и что, следовательно, принцип относительности во всяком случае применим и к электромагнитным явлениям. Отсюда следует, что преобразование Галилея в общем случае неправильно и должно быть заменено другим. 3. Преобразование Лоренца Преобразование Лоренца показывает, как изменяются расширенные координаты события при переходе от одной инерциальной системы отсчета к другой инерциальной же системе. Пусть инерциальная система «Бета» движется относительно инерциальной системы «Альфа» с постоянной скоростью v, причем ось х? скользит по оси х, а оси y?, z? всегда остаются соответственно параллельными осям y?, z?. Для конкретности будем предполагать, что система «Альфа» связана с ракетой «Альфа», а система «Бета» - с ракетой «Бета». Счет времени в обеих системах условимся вести от того момента, когда их начала координат совпали (иными словами, обе системы отсчета имеют одно и то же «начальное событие» О - прохождение ракеты «Альфа», мимо ракеты «Бета»). Для упрощения формул единицы времени и длины выбираются таким образом, чтобы скорость света была равна единице и являлась величиной безразмерной. Для этого достаточно, например, выражать промежутки времени в секундах, а расстояния - в «световых секундах» (понимая под «световой секундой» отрезок, проходимый светом в течение одной секунды). Некоторое событие S характеризуется в системе «Альфа» расширенными координатами x?, y?, z?, t?. Каковы его расширенные координаты x?, y?, z?, t? в системе «Бета»? Чтобы ответить на этот вопрос, обратимся к пространственно-временному графику, построенному в системе «Альфа» (рис. 2), предполагая, что рассматриваемое событие произошло на оси x? (а значит, и на оси х?), так что y?= z?= y? = z?=0. AS - это расстояние события S (точнее, того места, где оно произошло) от ракеты «Альфа», т.е. его пространственная координата х?. АВ - это расстояние между ракетами в момент t?. Так как ракета «Альфа» удаляется от «Беты» со скоростью v, а в момент t? =0 они были рядом, расстояние AB = vt?. BS = AS - AB= х? - vt? это расстояние события S от ракеты «Бета», как оценил бы его альфацентрист, которому могло бы даже казаться, что именно данная величина должна служить бетацентристу координатой х?, события S в системе «Бета». Однако, как мы сейчас увидим, сам бетацентрист с такой оценкой не согласится; поэтому «спорную» величину BS = х? - vt? обозначим пока через x'. Отказ бетацентриста признать величину х' координатой х? события S в системе «Бета» имеет два веских основания. Во-первых, по мнению бетацентриста точка В пространственно-временного графика изображает положение ракеты «Бета» отнюдь не в момент события 5, а позже (раз речь идет о х? координате, а не х?, одновременность следует понимать в смысле системы «Бета»!). С точки зрения бетацентриста, одновременное с событием S положение ракеты «Бета» соответствует точке С (прямая CS параллельна оси нулевого t?). Во-вторых, на этом пространственно-временном графике альфацентриста все расстояния измерены масштабом, покоящимся в системе «Альфа», тогда как при определении координаты х? надо во всем поступать по правилам системы «Бета». С точки зрения бетацентриста, масштаб альфацентриста не находится в покое, а движется со скоростью v и потому может иметь неправильную длину. Таким образом, поправки, которые внесет бетацентрист в оценку альфацентриста, сведутся к следующему: 1) к замене отрезка BS отрезком CS, параллельным оси х?, что равносильно умножению величины х' на некоторый коэффициент k1, зависящий от угла ?=arc tg v, но одинаковый для всех событий. 2) к изменению единицы длины, что также равносильно умножению величины х' еще на один коэффициент k2, тоже зависящий только от v. Учитывая обе поправки, мы можем написать: х?= k1 k2 х'= k1 k2(х? - vt?), или, рассматривая произведение k1 k2 как новый коэффициент К (зависящий от v), х?= K(х? - vt?). Полученная формула преобразования координаты х при переходе к другой инерциальной системе отсчета отличается от галилеевской только наличием коэффициента K. На рис. 2 видно, что при переходе к новой системе отсчета меняется также и временная дата события: в системе «Альфа» событие S произошло в момент t?, а в системе «Бета» - в момент t?. Графически t? (временная дата события S в системе «Альфа») выражается отрезком MS, т.е. расстоянием точки S от оси нулевого t?. Временная дата того же события t? определяется по часам, покоящимся в системе «Бета». Пространственно - временная трасса этих часов изображается прямой RS, причем точка R соответствует прохождению стрелки этих часов через нуль (в системе «Бета» событие В считается одновременным с начальным событием О). Таким образом, временная дата t? события S в системе «Бета» соответствует отрезку RS, однако не в том масштабе, в каком t? соответствует расстоянию MS. Ведь секунда по часам, покоящимся в системе «Бета», может существенно отличаться от секунды по часам, покоящимся в системе «Альфа», а каждый физик при измерениях должен полагаться только на часы, неподвижные относительно избранной им системы. Поскольку единицы длины и времени выбираются не независимо, а с таким расчетом, чтобы скорость света численно равнялась единице (например, единица времени - секунда, а единица длины - световая секунда), они должны изменяться благодаря движению в одинаковое число раз (иначе был бы нарушен принцип постоянства скорости света). Следовательно, поправочный коэффициент k2, введенный ранее для длин, справедлив также и для отрезков времени. Что же касается перехода от отрезка NS к отрезку RS, то он, в силу подобия треугольников NRS и BCS, тоже сводится к умножению на введенный уже коэффициент k1. Отрезок же MN равен vx? (как катет треугольника OMN, в котором tg ? = v). Поэтому t?= k2 • RS = k2 • k1NS= k1 k2 (MS - MN)= k1 k2(t?-vx?), или окончательно t?= K (t?-vx?), где K = k1 k2 - знакомый уже нам коэффициент, зависящий только от v (в принятой нами системе единиц t и х выражаются в секундах, a v - безразмерная величина). Полученная формула преобразования временной даты события при замене одной инерциальной системы отсчета другой инерциальной же системой противопоставляется галилее-ньютоновскому представлению о единой для всех систем универсальной шкале времени. Эта формула отражает как зависимость хода часов от их движения, так и различие в понимании одновременности. К полученным нами двум формулам преобразования расширенных координат события х?= K(х? - vt?), t?= K (t?-vx?) могут быть еще добавлены очевидные соотношения y?= y?, z?=z?, которые показывают, что при переходе к другой системе, движущейся вдоль оси х, «поперечные» координаты у и z не изменяются. 5. Теория относительности А. Эйнштейна Альберт Эйнштейн (1879-1955) - физик-теоретик, один из основателей современной физики, лауреат Нобелевской премии, иностранный член-корреспондент РАН (1922) и иностранный почетный член АН СССР (1926). Родился в Германии, с 1893 жил в Швейцарии, с 1914 в Германии, в 1933 эмигрировал в США. Создал частную (1905) и общую (1907-16) теории относительности. В 1905 г. Эйнштейну было 26 лет, но его имя уже приобрело широкую известность. В 1909 г. он избран профессором Цюрихского университета, а через два года - Немецкого университета в Праге. В 1912 г. Эйнштейн возвратился в Цюрих, где занял кафедру в Политехникуме, но уже в 1914 г. принял приглашение переехать на работу в Берлин в качестве профессора Берлинского университета и одновременно директора Института физики. Германское подданство Эйнштейна было восстановлено. К этому времени уже полным ходом шла работа над общей теорией относительности. В результате совместных усилий Эйнштейна и его бывшего студенческого товарища М. Гроссмана в 1912 г. появилась статья «Набросок обобщенной теории относительности», а окончательная формулировка теории датируется 1915 г. Эта теория, по мнению многих ученых, явилась самым значительным и самым красивым теоретическим построением за всю историю физики. Опираясь на всем известный факт, что «тяжелая» и «инертная» массы равны, удалось найти принципиально новый подход к решению проблемы, поставленной еще И. Ньютоном: каков механизм передачи гравитационного взаимодействия между телами и что является переносчиком этого взаимодействия. Ответ, предложенный Эйнштейном, был ошеломляюще неожиданным: в роли такого посредника выступала сама «геометрия» пространства - времени. Любое массивное тело, по Эйнштейну, вызывает вокруг себя «искривление» пространства, то есть делает его геометрические свойства иными, чем в геометрии Евклида, и любое другое тело, движущееся в таком «искривленном» пространстве, испытывает воздействие первого тела. Созданная А. Эйнштейном общая теорией относительности является обобщением ньютоновской теории тяготения на основе специальной теории относительности. В основе общей теории относительности лежит принцип эквивалентности - локальной неразличимости сил тяготения и сил инерции, возникающих при ускорении системы отсчета. Этот принцип проявляется в том, что в заданном поле тяготения тела любой массы и физической природы движутся одинаково при одинаковых начальных условиях. Теория Эйнштейна описывает тяготение как воздействие физической материи на геометрические свойства пространства-времени; в свою очередь, эти свойства влияют на движение материи и другие физические процессы. В таком искривленном пространстве-времени движение тел «по инерции» (т.е. при отсутствии внешних сил, кроме гравитационных) происходит по геодезическим линиям, аналогичным прямым в неискривленном пространстве, но эти линии уже искривлены. В сильном поле тяготения геометрия обычного трехмерного пространства оказывается неевклидовой, а время течет медленнее, чем вне поля. Общая теория относительности привела к предсказанию эффектов (конечной скорости изменения поля тяготения, равной скорости света в вакууме - это изменение переносится в виде гравитационных волн; возможности возникновения черных дыр и др.), которые вскоре получили экспериментальное подтверждение. Она позволила также сформулировать принципиально новые модели, относящиеся ко всей Вселенной, в том числе и модели нестационарной (расширяющейся) Вселенной. Из уравнений релятивистской механики (как и механики Ньютона) вытекает закон сохранения энергии, для которого получается новое выражение: E=mc2. Это - знаменитое соотношение Эйнштейна, связывающее массу тела и его энергию. Иногда это соотношение ошибочно истолковывают как указание на возможность взаимных превращений массы и энергии. В действительности же оно означает лишь то, что масса всегда пропорциональна энергии. В частности, наличие у покоящейся частицы массы говорит и о наличии у нее энергии (энергии покоя), что не играет роли в классической механике, но приобретает принципиальное значение при рассмотрении процессов, в которых число и сорт частиц может изменяться и поэтому энергия покоя может переходить в другие формы. В атомных ядрах энергия притяжения частиц приводит к тому, что общая масса ядра оказывается меньше суммы масс отдельных частиц (дефект массы). Установление этого факта явилось одним из важнейших шагов к возникновению ядерной энергетики, так как позволило оценить ту значительную энергию, которая должна высвобождаться при делении тяжелых и слиянии легких ядер. Наибольшую известность Эйнштейну принесла теория относительности, изложенная им впервые в 1905 г. в статье «К электродинамике движущихся тел». Уже в юности Эйнштейн пытался понять, что увидел бы наблюдатель, если бы бросился со скоростью света вдогонку за световой волной. Будучи студентом, Эйнштейн изучал труды Максвелла, был убежден в существовании всепроникающего эфира и размышлял о том, как на него действуют различные поля (в частности, магнитное) и как можно экспериментально обнаружить движение относительно эфира. Теперь Эйнштейн решительно отверг концепцию эфира, что позволило рассматривать принцип равноправия всех инерциальных систем отсчета как универсальный, а не только ограниченный рамками механики. Исходя из невозможности обнаружить абсолютное движение, Эйнштейн сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, делавших излишней гипотезу о существовании эфира, которые составили основу обобщенного принципа относительности: Постулат I. Все тождественные физические явления в инерциальных системах отсчета при одинаковых начальных условиях протекают одинаково. Другими словами, среди ИСО не существует «привилегированной» системы и невозможно обнаружить состояние абсолютного движения. Этот постулат распространяет принцип относительности Галилея на все явления природы. Он раз навсегда кончает с абсолютным пространством: если все инерциальные системы отсчета равноправны, то среди них нет привилегированной системы отсчета. Абсолютное же пространство как раз и было привилегированной системой. Точно так лее отпадает и вопрос об «абсолютном» движении (в вакууме), которое подразумевалось как движение относительно абсолютной системы отсчета Постулат II. Скорость света в вакууме одинакова по всем направлениям и в любой области данной инерциальной системы отсчета и одинакова во всех инерциальных системах отсчета. Часто к этому постулату добавляют еще, что скорость света в вакууме не зависит от скорости источника. Это, однако, сразу следует из постулата II в той форме, в которой он выписан выше. Действительно, с источником всегда можно связать инерциальную систему отсчета (если он движется неравномерно и по кривой, то мгновенно сопутствующую инерциальную систему). В этой системе источник покоится, а все остальные инерциальные системы движутся относительно пего (а он относительно них). Согласно постулату II скорость света во всех этих системах одинакова, по это и означает, что она не зависит от скорости источника. Следует четко понимать, что подразумевает постулат II. Для этого представим себе, что в системе К измеряется скорость света следующим образом. Из точки х1 в момент времени t2 посылается вдоль оси х световой сигнал, который приходит в точку х2 в момент времени t2. Тогда с = (х2 - x1)/(t2 - t1) - Эти же два события - посылка и прием сигнала - рассматриваются из системы К'. Посылка сигнала для наблюдателя из системы К' происходит в точке х1' в момент t1, а прием - в точке х2' в момент t2'. И несмотря на то, что системы К и К' находятся в относительном движении, направленном как раз по общей оси х, х', мы должны получить, что отношение тоже (х2 - x1)/(t2 - t1) равно с. С точки зрения «здравого смысла» такого быть не должно. Но именно этого требует второй постулат. После того как сформулированы первые принципы теории относительности - два постулата Эйнштейна, - можно сформулировать общую задачу специальной теории относительности. Ее основа - это принцип относительности: равноправие всех специальных систем отсчета по отношению ко всем физическим явлениям. Теория относительности обязана дать такое описание физических явлений, которое было бы одинаковым во всех инерциальных системах отсчета. Но если в нашем распоряжении есть уравнения, описывающие ту или иную группу явлений, то эти уравнения должны иметь одинаковый вид во всех инерциальных системах отсчета (в каждой системе отсчета в своих переменных). Вспомним, что в уравнения механики и электродинамики существенным образом входят координаты и время наступления события. При переходе от одной инерциальной системы к другой координаты и время наступления события преобразуются. Преобразования Галилея изменяют вид уравнений Максвелла, но, поскольку мы хотим сохранить уравнения Максвелла, как правильные уравнения электромагнитного поля, во всех инерциальных системах, нам следует найти такие преобразования координат и времени, которые сохраняют вид максвелловских уравнений. Такими преобразованиями окажутся преобразования Лоренца. Однако преобразования Лоренца непосредственно вытекают и из постулатов Эйнштейна. Дело в том, что теория Максвелла была построена с самого начала как релятивистская. Внутренняя причина этого состоит в том, что она содержала в себе правильное описание свойств самого релятивистского объекта - света. Таким образом, найдя преобразования координат и времени события, удовлетворяющие постулатам Эйнштейна, мы должны позаботиться о том, чтобы основные уравнения физики были одинаковыми во всех инерциальных системах, т.е. были бы ковариантными по отношению к этим преобразованиям. Основными законами в механике мы называем уравнения Ньютона, в электродинамике - уравнения Максвелла, в термодинамике - уравнения, выражающие первое и второе начала. Относительные величины были и в классической физике - например, скорости, координаты, направления скоростей, - но специальная теория относительности добавляет к ним - несколько неожиданно для нашей интуиции - относительность промежутков времени между событиями и относительность длин масштабов (расстояний). Однако это и есть та «цена», которую приходится платить за то, чтобы реализовать принцип относительности по отношению ко всем физическим явлениям. И все же самое главное в теории относительности, вопреки ее названию, - это совсем не относительность различных величин, т.е. их зависимость от выбора системы отсчета. Суть теории относительности как раз в обратном. Теория относительности показывает, что законы природы в инерциальных системах отсчета не зависят от выбора системы отсчета, не зависят от положения и движения наблюдателя, а результаты измерений в различных системах отсчета могут быть сопоставлены. Говоря философским языком, теория относительности подчеркивает объективный характер законов природы, а вовсе не относительность знания. Конечно, пытаться изменить исторически сложившееся название - кстати, оно принадлежит не Эйнштейну, а было предложено Планком в 1906 г. - дело безнадежное. Однако есть одна деталь, на которую можно обратить внимание. Спорят, как правильно говорить: «специальная» или «частная» теория. Едва ли этот спор имеет существенное значение. По смыслу речь идет об ограничении теории рамками инерциальных систем отсчета. По существу это ограничение сводится к тому, что теория справедлива в отсутствие полей тяготения или - практически - в слабых полях тяготения. Поэтому самым правильным названием было бы название «ограниченная теория относительности», принятое во французской литературе. Заключение Теория относительности А. Эйнштейна - физическая теория, рассматривающая пространственно-временные свойства физических процессов. Так как закономерности, устанавливаемые теорией относительности, - общие для всех физических процессов, то обычно о них говорят просто как о свойствах пространства-времени. Эти свойства зависят от полей тяготения в данной области пространства-времени. Теория, описывающая свойства пространства-времени в приближении, когда полями тяготения можно пренебречь, называется специальной или частной теорией относительности, или просто теорией относительности. Свойства пространства-времени при наличии полей тяготения исследуются в общей теории относительности, называемой также теорией тяготения Эйнштейна. Физические явления, описываемые теорией относительности, называются релятивистскими и проявляются при скоростях v движения тел, близких к скорости света в вакууме. В основе теории относительности лежат два положения: принцип относительности, означающий равноправие всех инерциальных систем отсчета, и постоянство скорости света в вакууме, ее независимость от скорости движения источника света. Эти два постулата определяют формулы перехода от одной инерциальной системы отсчета к другой - преобразования Лоренца, для которых характерно, что при таких переходах изменяются не только пространственные координаты, но и моменты времени (относительность времени). Из преобразований Лоренца получаются основные эффекты специальной теории относительности: существование предельной скорости передачи любых взаимодействий - максимальной скорости, до которой можно ускорить тело, совпадающей со скоростью света в вакууме; относительность одновременности (события, одновременные в одной инерциальной системе отсчета, в общем случае не одновременны в другой); замедление течения времени в быстро движущемся теле и сокращение продольных - в направлении движения - размеров тел и др. Все эти закономерности теории относительности надежно подтверждены на опыте. Теория относительности выявила ограниченность представлений классической физики об «абсолютных» пространстве и времени, неправомерность их обособления от движущейся материи; она дает более точное, по сравнению с классической механикой, отображение объективных процессов реальной действительности. Ряд выводов общей теории относительности качественно отличаются от выводов ньютоновской теории тяготения. Важнейшие среди них связаны с возникновением черных дыр, сингулярностей пространства-времени, существованием гравитационных волн (гравитационного излучения). Представления о пространстве и времени составляют основу физического миропонимания, что уже само по себе определяет значение теории относительности. Особенно велика ее роль в физике ядра и элементарных частиц, в том числе и для расчетов гигантских установок, которые предназначены для потоков очень быстрых частиц, необходимых для экспериментов, позволяющих продвинуться в изучении строения материи. Список используемой литературы 1. Е. Куранский. Альберт Эйнштейн и теория гравитации. - М., 1979 2. Ю. Соколовский. Теория относительности в элементарном изложении. - М., 1964 3. В. Фок. Теория пространства, времени и тяготения. - М., 1961 4. В. Угаров. Специальная теория относительности. - М., 1977.


Ответ студента (22.07.2013)

Специальная теория относительности (СТО). В основе лежат два принципа или постулата, которые не объясняют, почему должно происходить именно таким образом, а не иначе. Однако построенная на их принятии теория позволяет точно описывать события, происходящие в мире. 1. Все физические законы должны выглядеть одинаковыми во всех инерциальных системах отсчета. 2. Скорость света в вакууме не изменяется при изменении состояния движения источника света. Следствия, вытекающие из первого принципа: 1. Не только законы механического движения, как было в классической механике, но и законы других физических явлений должны выглядеть или проявлять себя одинаково во всех инерциальных системах отсчета. 2. Все инерциальные системы отсчета равноправны. Следовательно, нет привилегированной системы отсчета, будь то Земля или эфир. 3. Понятие эфира как абсолютной системы отсчета лишено физического смысла. Следствия, вытекающие из второго принципа: 1. Не существует бесконечно большой скорости распространения физического взаимодействия в мире. 2. В физическом мире взаимодействие не осуществляется мгновенно со скоростью, превышающей скорость света. Следствия, вытекающие совместно из двух принципов СТО: 1. В мире нет одновременных событий. 2. Нельзя рассматривать пространство и время как независимые друг от друга свойства физического мира. 3.Преобразования Лоренца имеют физический смысл. Доказательство связи пространства и времени можно пояснить на следующем примере, в котором следует иметь в виду, что согласно СТО во всех инерциальных системах отсчета свет распространяется с одной и той же скоростью. Предположим, что имеются две инерциальные системы отсчета, которые равноправны в описании физических событий, т. е. каждая дает объективные описания: человек, стоящий на железнодорожной платформе (смотритель), и пассажир движущегося с одинаковой скоростью поезда относительно платформы и стационарного смотрителя. Над головой пассажира находится осветительная электрическая лампочка, которая вспыхивает в момент, когда пассажир, сидящий у окна вагона, и смотритель, стоящий на платформе, окажутся точно друг против друга по ходу движения поезда. Классическая механика дает следующее описание этого события. Время имеет абсолютный смысл, поэтому оно не зависит от пространственного перемещения событий. Смотритель стоит, пассажир движется, но ритм времени для них один и тот же. СТО дает другое решение: 1. Для пассажира в вагоне свет достигнет обеих стенок вагона одновременно, поскольку во всех инерциальных системах отсчета свет распространятся по всем направлениям с одинаковой скоростью. 2. У смотрителя будет другая точка зрения. Он скажет, что заднюю стенку (она движется к свету по ходу поезда) свет достигнет раньше, чем переднюю стенку вагона, поскольку он ее догоняет по ходу поезда. Далее, если заранее установить одно и то же время на часах смотрителя и пассажира поезда, то для станционного смотрителя часы у задней стенки вагона будут показывать время, отличное от времени на циферблате часов у передней стенки. Они будут показывать, что свет достигает заднюю стенку раньше, чем переднюю стенку. Следовательно, одни часы идут быстрее, другие — медленнее. Таким образом, пространство и время, по СТО, взаимосвязаны между собою и являются не абсолютными, как было у Галилея — Ньютона, а относительными: скорость хода часов зависит от места их положения в пространстве, место положения в пространстве влияет на скорость хода часов. Недостатки СТО: 1. В ней речь идет только об инерциальных системах отсчета. Но большинство систем отсчета являются в реальной жизни неинерциальными (изменяется ускорение и скорость со временем). 2. В ней не учитывается действие силы гравитации на свет Поиск устранения этих изъянов СТО привел к созданию ОТО. Общая теория относительности (ОТО) основывается на двух принципах или постулатах 1. Принцип относительности. 2. Принцип эквивалентности тяжелой и инертной масс тела. Первый принцип утверждает, что законы физики должны иметь один и тот же вид не только в инерциальных системах, но и в неинерциальных системах отсчета, т. е. инерциальные системы отсчета не должны рассматриваться как привилегированные системы отсчета, как это делала классическая механика. Анализируя неинерциальные системы отсчета, движущиеся с одинаковым ускорением, Эйнштейн пришел к неожиданному выводу о том, что в этих системах возникает явление, сходное с явлением тяготения в однородном поле гравитации. Однородное гравитационное поле — это некая абстракция или идеализация. В этом поле сила гравитации имеет одинаковую величину по всем его направлениям и в каждой его точке. Учитывая это сходство, А. Эйнштейн пришел к выводу, что силу тяжести можно создать или уничтожить переходом в систему отсчета, движущуюся с ускорением. Например, если человек находится в лифте без окон вне действия силы тяготения, то он будет находиться в состоянии невесомости. Все окружающие его предметы и он сам не будут притягиваться к полу лифта. Если мысленно тянуть лифт вверх с помощью каната со скоростью, равной ускорению свободного падения на Земле, то этот человек ощутит действия силы гравитации, которая будет аналогична силе гравитации в однородном гравитационном поле, где в каждой его точке ускорение свободного падения тел имеет одну и ту же величину. На самом деле из внешней системы отсчета правильно говорить о том, что лифт, его пол, движется к находящемуся в нем человеку и предметам. Принцип эквивалентности тяжелой и инертной масс. В этом принципе содержится ответ на вопрос, который задавал себе Эйнштейн: от чего зависит действие силы тяготения, чем она определяется? В физике Ньютона тяготение зависит исключительно от массы тел. Из закона свободного падения тел, открытого Галилеем, следовало, что между тяжелой и инертной массами тела существует пропорциональная зависимость, которая позволяет допустить, что между этими массами тела нет существенного различия, когда мы говорим о действии силы гравитации. Поскольку все тепа падают с одним и тем же -ускорением независимо от их веса, то это говорит о том, что инертная масса тел пропорциональна их гравитационной массе. Отношение Mi ? mi (где mi — инертная масса любого тела, Mi — гравитационная масса этого же тела) при свободном падении тел остается постоянным для всех теп независимо от их реальной физической природы (сделанные из дерева или металла и т.п.). В 1890 г. венгерский физик Этвеш экспериментально доказал справедливость предположения физики Галилея-Ньютона о пропорциональной инертной и гравитационной масс тела. У Ньютона это отношение было меньше 10-8 (M1,/m1 < 10-8). В дальнейшем эта величина оказалась еще меньше, что позволяет говорить о равенстве, эквивалентности этих масс тела. Анализируя физический смысл пропорционального соответствия между инертной и тяжелой массами тела, а также природу сходства действия силы тяготения с явлением, возникающим в неинерциальной системе отсчета, движущейся с постоянным ускорением, Эйнштейн пришел к выводу, что сила тяготения не зависит от массы тел. Естественно, возникал вопрос: от чего она зависит? На этот вопрос Эйнштейн дал следующий ответ: с теоретической точки зрения есть основания утверждать, что сила тяжести эквивалентна искривлению пространства и искривление пространства эквивалентно действию силы тяготения. В этом решении силе инерции, которая в физике Ньютона рассматривалась как нереальная сила, придается реальный статус. Например, при движении поезда пассажиры наблюдают кажущееся движение предметов вне поезда в противоположную сторону. В теории Эйнштейна этой силе придается реальный смысл. Предположим, что имеется лифт, который закреплен на канате таким образом, что на расположенные в нем предметы не действует сила тяготения. Тогда предметы будут располагаться на одной линии относительно пола лифта. В момент обрезания каната возникнет сила инерции, которая будет стремиться сохранить начальное положение каждого предмета в лифте. Поскольку сила тяготения направлена к центру Земли, то направление силы инерции для каждого предмета лифта не будет одинаковым, а будет зависеть от его расстояния до центра лифта. Для одних предметов она будет направлена вверх, где сила тяготения будет перпендикулярно направлена к центру Земли. В других местах лифта направление силы инерции будет под определенным углом к направлению силы гравитации. В результате пространство внутри падающего лифта будет искривленным. Для наблюдателя вне лифта предметы будут располагаться не на прямой горизонтальной линии, параллельной полу, а на искривленной линии. Свет в таком пространстве будет распространяться не по прямой линии, как этого требовала СТО, а по кривой линии.


Нужно высшее
образование?

Учись дистанционно!

Попробуй бесплатно уже сейчас!

Просто заполни форму и получи доступ к нашей платформе:




Получить доступ бесплатно

Ваши данные под надежной защитой и не передаются 3-м лицам


Другие ответы по предмету

Планета Земля как сложное системное образование.
Планета Земля как сложное системное образование.
История становления  естественнонаучной картины м...
История становления естественнонаучной картины м...
Земля в мире Космоса.  Космизм.
Земля в мире Космоса. Космизм.
Детерминизм и  индетерминизм как основа решения п...
Детерминизм и индетерминизм как основа решения п...
Системность и структурность как важнейшие атрибут...
Системность и структурность как важнейшие атрибут...