Назначение компьютерных сетей. Виды сетей.

Информатика

0


Подпишитесь на бесплатную рассылку видео-курсов:

Ответ студента (21.04.2011)

Компьютерная сеть - представляет собой систему распределенной обработки информации, состоящую как минимум из двух компьютеров, взаимодействующих между собой с помощью специальных средств связи. Или другими словами сеть представляет собой совокупность соединенных друг с другом ПК и других вычислительных устройств, таких как принтеры, факсимильные аппараты и модемы. Сеть дает возможность отдельным сотрудникам организации взаимодействовать друг с другом и обращаться к совместно используемым ресурсам; позволяет им получать доступ к данным, хранящимся на персональных компьютерах в удаленных офисах, и устанавливать связь с поставщиками. Компьютеры , входящие в сеть выполняют следующие функции: Организация доступа к сети Управление передачей информации Предоставление вычислительных ресурсов и услуг абонентам сети. Виды компьютерных сетей. Локальные и территориально-распределенные сети Локальная сеть (LAN) связывает ПК и принтеры, обычно находящиеся в одном здании (или комплексе зданий). Территориально-распределенная сеть (WAN) соединяет несколько локальных сетей, географически удаленных друг от друга.


Ответ студента (16.08.2012)

Институт профессиональных инноваций ЭКЗАМЕНАЦИОННАЯ РАБОТА ПО ДИСЦИПЛИНЕ «ИНФОРМАТИКА» ТЕМА РАБОТЫ: «ВНУТРЕННЕЕ УСТРОЙСТВО ПК» ВЫПОЛНИЛА: СТУДЕНТ I КУРСА СПЕЦИАЛЬНОСТИ «МЕНЕДЖМЕНТ». ЗАЛИПАЕВА У.И . Г. ВОЛГОГРАД 2012г СОДЕРЖАНИЕ 1. Внутренние устройства ПК 1.1. Микропроцессор 1.2. Основная (материнская) плата и шина 1.3. Память 1.4. Накопители на подвижном магнитном носителе 1.5. Накопители на гибких магнитных дисках 1.6. Оптические диски 1.7. Блоки расширения Список литературы 1. Внутренние устройства ПК 1.1. Микропроцессор Центром вычислительной системы является ее процессор. Это основное звено, или (мозг) компьютера. Именно процессор обладает способностью выполнять команды, составляющие компьютерную программу. Персональные компьютеры строятся на базе микропроцессоров, выполняемых в настоящее время на одном кристалле (чипе). IBM PC начинались с микропроцессора 8086 фирмы Intel (точнее, с его ослабленной и удешевленной версии 8088 и 8-разрядной шиной для PC XT (eXTended)). Затем появились компьютеры серии PC AT (Advanced Technology) 80286, 80З86, 80486 (общее обозначение - 80х86) с 16-разрядной шиной. После чего Intel изменила систему обозначений, и вместо 80586 возник Pentium. Следующий процессор при разработке обозначался Р6 и на рынке ожидался под именем Hexium (от греч.(гекса) - шесть), но появился в продаже как Pentium Pro - в знак того, что принципиально от Pentium не отличается, только заметно лучше. Каждая новая модель умеет много нового - и лучше выполняет старое. С каждым усовершенствованием растет частота тактовых импульсов, синхронизирующих работу всего компьютера. Внутреннее устройство процессоров непрерывно совершенствуется, и каждый следующий тратит на одну и ту же работу вдвое меньше тактов, чем предыдущий. В 8088 одна команда занимала 5-15 тактов, в Pentium - 0,5-1 (внутреннее дублирование схем позволяет ему выполнять несколько команд одновременно). Поэтому с точки зрения производительности микропроцессора, т. е. сколько он выполняет миллионов операций в секунду (MIPS - Million Instruction Per Second), каждое его следующее поколение даже при одной и той же тактовой частоте работает быстрее. При переходе от одного поколения микропроцессоров к другому разработчики стремились сохранить набор основных команд, чтобы обеспечить преемственность и совместимость. При этом в формировании набора команд микропроцессора наметилось два направления. С одной стороны, программисту очень удобна машина, выполняющая одной командой какую-нибудь сложную операцию, например, команду извлечения квадратного корня. Но чем сложнее команды, тем сложнее схемы и дороже процессор. Поэтому программисты уже давно определили, какого минимального набора команд достаточно, чтобы программы из них было легко и удобно строить. А инженеры разработали схемы быстрого выполнения именно таких удобных команд. Программа, составленная из подобных простейших команд, - длиннее. Однако она исполняется настолько быстро, что в целом, все равно, ее исполнение занимает меньше времени. Кроме того, легче учесть взаимовлияние простых команд. Значит, проще оптимизировать программу, а затем эту оптимизацию автоматизировать. Две противоположные тенденции, именуемые CISC - Complex Instruction Set Computer – «компьютер с полным набором команд» и RISC - Reduced Instruction Set Computer – «компьютер с ограниченным набором команд», конкурируют давно. Как правило, любые новые достижения инженеров реализуются в ограниченном наборе (RISC), а по мере совершенствования переходят в полный (CISC) набор, как было с микропроцессорами 80х86. Необходимо отметить еще одну важную особенность. Если команды просты, то легко определить, какие из них для каких поставляют исходные данные, и переупорядочить команды так, чтобы те из них, которые не влияют друг на друга, выполнялись одновременно, поэтому сейчас основные изготовители микропроцессоров ориентируются на RISC. В 1997 году начат выпуск новых ММХ - процессоров (MultiMedia Extensions), обеспечивающих поддержку мультимедийных приложений «изнутри». Поскольку практически все мультимедийные данные представляются короткими 8-битными последовательностями, то для ускорения работы процессора в него добавили еще один конвейер для их упаковки в 64-битную пачку за счет введения в набор команд специальных 57 мультимедийных команд. Дополнительный блок обработки мультимедиа разгружает ядро процессора и снимает часть нагрузки видео и аудиокарт и средств телекоммуникации. Результаты тестов показали, что при выполнении традиционных приложений процессоры Pentium ММХ оказались на 10 - 15% производительнее прежних Pentium, а для программ, использующие ММХ - команды, - в 1,5 - 2,5 раза лучше. Однако использование этих команд приводит к новой переработке всего программного обеспечения, которое нельзя будет использовать на не мультимедийных процессорах (что, вообще говоря, заставляет купить новый компьютер). Все последующие микропроцессоры как фирмы Intel, так и других фирм являются мультимедийными с еще большим набором специальных команд (добавлено еще более 100 мультимедийных команд), хотя в обозначении микросхемы этот факт не находит отражения. С начала 1998 года Intel избрал новую политику - дробить рынок на части и для каждой делать свой продукт. Так наряду с производительными и дорогими Pentium II (с начала 1999 г. Pentium III) появилось семейство Celeron (рис.1-1), нацеленное на низшую ценовую категорию для конкуренции с микропроцессорами фирмы AMD. Процессоры следующего поколения Pentium III выпущены по новой (0.18 мкм) технологии и имеет более высокую тактовую частоту 500-550 МГц. В нем реализованы расширения инструкций, получившие название SSE (Streaming SIMD Extensions). Это позволяет достичь высоких скоростей разработки и насыщенности цифрового содержания для воспроизведения специальных эффектов, рендеринга, создания 3-мерных изображений и текстур, а также обеспечивает значительное повышение производительности сети и Internet-приложений, использующих протокол TCP/IP, а также увеличение производительности приложений с интенсивным использованием системной или кэш-памяти. В последние годы Intel развивает серию Pentium 4: 2000г.- Intel Pentium 4 (Willamette, Socket 423). Принципиально новый процессор с гиперконвейеризацией (hyperpipelining) - с конвейером, состоящим из 20 ступеней. Согласно заявлениям Intel, процессоры, основанные на данной технологии, позволяют добиться увеличения частоты примерно на 40 процентов относительно семейства P6 при одинаковом технологическом процессе. Применена 400 МГц системная шина (Quad-pumped), обеспечивающая пропускную способность в 3,2 ГБайта в секунду против 133 МГц шины с пропускной способностью 1,06 ГБайт у Pentium III. Кодовое имя: Willamette. Технические характеристики: технология производства - 0,18 мкм; тактовая частота - 1.3-2 ГГц; кэш первого уровня - 8 Кб; кэш второго уровня - 256 Кб (полно скоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъём Socket 423. В 2001г. появился Intel Pentium 4 (Willamette, Socket 478). Этот процессор выполнен по 0.18 мкм процессу. Устанавливается в новый разъём Socket 478, поскольку предыдущий форм-фактор Socket 423 был «переходным» и Intel в дальнейшем не собирается его поддерживать. Кодовое имя: Willamette. Технические характеристики: технология производства - 0,18 мкм; тактовая частота - 1,3-2 ГГц; кэш первого уровня - 8 Кб; кэш второго уровня - 256 Кб (полно скоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъём Socket 478. Последние модификации процессора выпускаются по 0,13 мкм технологии с частотой системной шины 533 МГц. 1.2. Основная (материнская) плата и шина Для того чтобы микропроцессор мог работать, необходимы некоторые вспомогательные компоненты. Когда данные передаются внутри компьютерной системы, они проходят по общему каналу, к которому имеют доступ все компоненты системы. Этот путь получил название шины данных. Необходимо отметить, что понятие (шина данных) имеет общее значение, конкретно же и микропроцессор имеет свою шину данных и оперативная память. Когда нет специального уточнения, то речь идет, как правило, об общей шине, или иначе шине ввода-вывода. Эта шина формируется на сложной многослойной печатной плате - основной, или иначе, материнской (motherboard). Системная шина представляет собой совокупность сигнальных линий, объединённых по их назначению (данные, адреса, управление). Основной функцией системной шины является передача информации между базовым микропроцессором и остальными электронными компонентами компьютера. По этой шине так же осуществляется не только передача информации, но и адресация устройств, а также обмен специальными служебными сигналами. Концепция шины представляет собой один из наиболее совершенных методов унификации при разработке компьютеров. Вместо того чтобы пытаться соединять все элементы компьютерной системы между собой специальными соединениями, разработчики компьютеров ограничили пересылку данных одной общей шиной. Эта идея чрезвычайно упростила конструкцию компьютеров и существенно увеличила ее гибкость. Чтобы добавить новый компонент, не требуется выполнять множество различных соединений, достаточно присоединить его к шине через специальный разъем (Slot). Чтобы упорядочить передачу информации по шине используется контроллер шины. На основной плате когда-то были только шина, процессор и оперативная память. Все остальные устройства размещались на сменных платах, включаемых в разъемы (слоты) шины. Сейчас на motherboard находится добрая половина компьютера - и контроллер дисков, и видеоадаптер и порты. А вот процессор и память помещены на сменные платы (модули) - ибо более мощные процессоры и более емкие микросхемы памяти появляются по несколько раз в год и их можно заменить. Для современных компьютеров наметилась тенденция размещения дополнительного оборудования на motherboard (видеоадаптер, звуковая аппаратура, модем – интеграция технических средств). 1.3. Память Одним из основных элементов компьютера, позволяющим ему нормально функционировать, является память. Внутренняя память компьютера (оперативная память и кэш-память) - это место хранения информации, с которой он работает. Она является временным рабочим пространством. Информация во внутренней памяти не сохраняется при выключении питания, на диске же или дискете может храниться годами без потребления питания. В постоянной памяти (ROM) персонального компьютера записан набор программ базовой системы ввода-вывода (BIOS). Эта память энергонезависима и BIOS всегда готова к чтению при включении питания компьютера. Поскольку в памяти только для чтения замена записанной информации была невозможна, то переход на новую версию BIOS требовал замены набора микросхем материнской платы (чипсет). Поэтому в современных компьютерах устанавливается перепрограммируемая память Flash BIOS. (Однако сразу же проявился недостаток такой памяти: появились вирусы, перепрограммирующие базовую систему ввода/вывода, что приводит к полной неработоспособности компьютера). Память компьютера организована в виде множества ячеек, в которых могут храниться данные; каждая ячейка обозначается адресом. При этом адресация общая для постоянной и оперативной памяти так, что адреса, отведенные постоянной памяти, для оперативной памяти использовать нельзя. Сама адресация в угоду совместимости со старыми компьютерами усложнена - все это требует дополнительных программных средств управления памятью. Размеры этих ячеек отличаются у разных компьютеров и видов памяти. Современные процессоры работают намного быстрее обычных устройств машинной памяти. Поэтому, чтобы их не задерживать, в компьютер включают особую буферную память (Cache Memory), по скорости сравнимую с процессором. В ней информация всегда готова к использованию (название взято от французского слова cache – скрытый, ибо буфер включают так, чтобы программы его не замечали). . 1.4. Накопители на подвижном магнитном носителе Наименование накопителей на подвижном носителе (внешняя память) сохранилось от старых вычислительных машин, когда, действительно, накопители на магнитных дисках и магнитных лентах изготавливались в виде отдельных стоек (довольно больших по габаритам и весу) и располагались рядом с процессорной стойкой. В то же время данный термин имеет более глубокую основу, ведь и в персональном компьютере, хотя дисковод установлен внутри системного блока, процессор не может непосредственно использовать данные с диска, сначала они должны быть перенесены в оперативную (внутреннюю) память компьютера. Первый полностью герметизированный (для защиты от пыли) накопитель информации на магнитных дисках, созданный фирмой IBM, включал 2 диска диаметром 14 дюймов, на каждый из которых записывалось 30 Мбайт. Соответственно его обозначили 30/30. Так же обозначалась популярная винтовка образца 1888 года фирмы Winchester (винчестер). Поэтому, наверное, герметичные дисководы обрели такое название. Для первых персональных компьютеров разработали винчестеры диаметром 5,25", затем для портативных компьютеров - 3,5"; а в ноутбуки уже ставят накопители диаметром 2,5" и даже 1,8". Винчестеры размером 5,25" теперь не используются даже в настольных компьютерах, чаще устанавливаются 3.5" 1.5. Накопители на гибких магнитных дисках Гибкий (floppy) диск (дискета) - круг лавсановой пленки с магнитным покрытием, помещенный в защитный конверт еще недавно был единственным сменным носителем информации в компьютере, ведь первые PC (до РС ХТ) других дисков не имели. Первые дискеты для РС были размера 5,25", портативные РС потребовали формата 3,5", однако позднее они стали применяться на всех компьютерах, и вытеснили дискеты 5,25". Емкость первых 5,25" дискет для РС была не велика, сначала 360 Кбайт, а затем 1200 Кбайт. Первые дискеты 3,5" сразу были большей емкости, сначала 720 Кбайт, а затем 1440 Кбайт. Позднее был разработан стандарт на 3,5" дискеты емкостью 2880 Кбайт, но они получили меньшее распространение, тем более что появились разработанные по новой технологии дискеты сразу почти в 100 раз большей емкости. Информация на дискету записывается с двух сторон, с каждой из которых располагается 80 дорожек. Головки на верхней и нижней сторонах дискеты смещены друг относительно друга, чтобы они не мешали подтягивать (для уменьшения зазора) поверхность дискеты к головкам за счет аэродинамических эффектов при вращении носителя. Также в зависимости от формата каждая сторона разбивается на определенное количество секторов. В дисководах для гибких дисков (дискет) головки записи/чтения при его работе непосредственно касаются поверхности дискеты, поэтому скорость вращения значительно ниже (300 или 360 оборотов в минуту) и дискеты быстрее выходят из строя. Для уменьшения трения дискеты покрывают защитным слоем тефлона (фр. тефаль) - материала с очень низким коэффициентом трения. Они дороже раза в полтора, но зато служат гораздо дольше. 1.6. Оптические диски В эту группу объединены носители, которые для считывания информации используется чисто оптический принцип, когда 1 или 0 распознаются по различной фазе отраженного лазерного луча от поверхности с различным состоянием, созданным при записи данных. WORM - накопители (Write Once Read Many - одна запись много считываний) представляют собой диск, помещенный обычно в прочный картридж 5,25", по конструкции подобный дискете 3,5" . Запись информации сводится к тому, что на светлой поверхности диска там, где это нужно, выжигаются лазерным лучом микроскопические темные пятнышки. Емкость накопителя составляет от 650 Мбайт до 1,3 Гбайт. Для записи поверхность магнитооптического диска прогревают лазерным лучом до температуры легкого перемагничивания (точки Кюри). Обычно сначала при постоянном нагреве намагничивают записываемый участок в одном направлении, а потом импульсным нагревом перемагничивают нужные точки. Это долго, требуется два оборота диска. Новейшие устройства способны создавать быстропеременное магнитное поле нужной силы и записывают за один оборот. Так что и по скорости записи магнитооптика догоняет винчестер. При этом, как и винчестер позволяют многократно перезаписывать информацию и подобно дискете заменять носитель. Такое сочетание свойств объясняет большую популярность МО в мире. 1.7. Блоки расширения Блоки (платы) расширения или карты (Card), как их иногда называют, могут использоваться для обслуживания устройств, подключаемых к IBM PC. Они могут использоваться для подключения дополнительных устройств (адаптеров дисплея, контроллера дисков и т.п.). Если оборудование умещается на одной плате, то его можно разместить внутри корпуса системного блока. Если же оно не помещается в корпус, например, в случае с монитором, то внутри размещается только плата управления или согласования, соединяющаяся с оборудованием с помощью кабеля, который можно подключить через соединитель (Connector), расположенный на задней стенке корпуса (точнее, соединитель располагается обычно непосредственно на торце платы). Каждой плате расширения, устанавливаемой в слот (Slot) на материнской плате, соответствует специальное отверстие в задней стенке корпуса, закрытое заглушкой, если оно не используется. При установке платы ее торец вместо заглушки становится элементом задней стенки компьютера. Необходимо отметить, что соотношение между оборудованием, размещаемым на материнской плате и устанавливаемым дополнительно в слоты, постепенно изменяется, с одной стороны, в пользу размещения оборудования на плате, а, с другой стороны, в пользу передачи реализации этих функций процессору. Так в ММХ - компьютерах обработку звука, фото - и видео - изображений, а также телекоммуникации - все это почти полностью взял на себя процессор, поэтому функции дополнительных устройств существенно упростились. Список литературы 1.Банк В.Р., Зверев В.С. Информационные системы в экономике: Учебник. – 2003 г. 2.Кузнецов Е. Ю., Осман В. М. Персональные компьютеры и программируемые микрокалькуляторы: Учеб. пособие для ВТУЗов - М.: Высш. шк. -1991 г. 160 с. 3.Борзенко А.В. IBM PC: устройство, ремонт, модернизация. - М., Компьютер Пресс, 1996.- 344 с.


Ответ студента Мария из группы Мб-45-13/3

Компьютерные сети – это системы компьютеров, объединенных каналами передачи данных, обеспечивающие эффективное предоставление различных информационно-вычислительных услуг пользователям посредством реализации удобного и надежного доступа к ресурсам сети. Информационные системы, использующие возможности компьютерных сетей, обеспечивают выполнение следующих задач: · Хранение и обработка данных · Организация доступа пользователей к данным · Передача данных и результатов обработки пользователям Эффективность решения перечисленных задач обеспечивается: · Дистанционным доступом пользователей к аппаратным, программным и информационным ресурсам · Высокой надежностью системы · возможностью оперативного перераспределения нагрузки · специализацией отдельных узлов сети для решения определенного класса задач · решением сложных задач совместными усилиями нескольких узлов сети · возможностью осуществления оперативного контроля всех узлов сети Виды компьютерных сетей. Компьютерные сети, в зависимости от охватываемой территории, подразделяются на: · локальные (ЛВС ,LAN-Local Area Network) · региональные (РВС,MAN – Metropolitan Area Network) · глобальные(ГВС, WAN – Wide Area Network) В локальной сети абоненты находятся на небольшом (до 10-15 км) расстоянии. К ЛВС относятся сети отдельных предприятий, фирм, банков, офисов и т.д. РВС связывают абонентов города, района, области. Глобальные сети соединяют абонентов, удаленных друг от друга на значительное расстояние, расположенных в разных странах, или разных континентах. По признакам организации передачи данных компьютерные сети можно разделить на две группы: * последовательные; * широковещательные. В последовательных сетях передача данных осуществляется после­довательно от одного узла к другому. Каждый узел ретранслирует при­нятые данные дальше. Практически все виды сетей относятся к этому типу. В широковещательных сетях в конкретный момент времени пе­редачу может вести только один узел, остальные узлы могут только принимать информацию.


Нужно высшее
образование?

Учись дистанционно!

Попробуй бесплатно уже сейчас!

Просто заполни форму и получи доступ к нашей платформе:




Получить доступ бесплатно

Ваши данные под надежной защитой и не передаются 3-м лицам


Другие ответы по предмету

Развитие вычислительной техники. Современное пони...
Развитие вычислительной техники. Современное пони...
Открытые компонентные технологии.
Открытые компонентные технологии.
Электронная коммерция.
Электронная коммерция.
Информационные системы
Информационные системы
Настройка элементов управления ОС Windows 98 (из ...
Настройка элементов управления ОС Windows 98 (из ...